Publications

Results 1–100 of 9,998

Search results

Jump to search filters

Grant, R.E., Hammond, S.D., Bachman, W.B., Levenhagen, M., Olivier, S.L., Bachman, W.B., Ward, L., Younge, A.J., & Younge, A.J. (2023). Enabling power measurement and control on Astra: The first petascale Arm supercomputer. Concurrency and Computation: Practice and Experience, 35(15). https://doi.org/10.1002/cpe.7303

D'Elia, M., Silling, S.A., You, H., Yu, Y., Fermen-Coker, M., & Fermen-Coker, M. (2023). Peridynamic Model for Single-Layer Graphene Obtained from Coarse-Grained Bond Forces. Journal of Peridynamics and Nonlocal Modeling. https://doi.org/10.2172/1819404

Naugle, A.B., Krofcheck, D.J., Warrender, C., Lakkaraju, K., Swiler, L.P., Verzi, S.J., Emery, B., Murdock, J., Bernard, M., Romero, V., & Romero, V. (2023). What can simulation test beds teach us about social science? Results of the ground truth program. Computational and Mathematical Organization Theory, 29(1), pp. 242-263. https://doi.org/10.1007/s10588-021-09349-6

Wendt, J.D., Field, R.V., Phillips, C.A., Prasadan, A., Wilson, T., Soundarajan, S., Bhowmick, S., & Bhowmick, S. (2023). Partitioning Communication Streams Into Graph Snapshots [Conference Presenation]. IEEE Transactions on Network Science and Engineering. https://doi.org/10.2172/1842249

Bachman, W.B., Maupin, K.A., Rodgers, T., & Rodgers, T. (2023). Monotonic Gaussian Process for Physics-Constrained Machine Learning With Materials Science Applications. Journal of Computing and Information Science in Engineering, 23(1). https://doi.org/10.1115/1.4055852

de Castro, A., Kuberry, P., Tezaur, I.K., Bochev, P., & Bochev, P. (2023). A Novel Partitioned Approach for Reduced Order Model - Finite Element Model (ROM-FEM) and ROM-ROM Coupling. Earth and Space 2022: Space Exploration, Utilization, Engineering, and Construction in Extreme Environments - Selected Papers from the 18th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments. https://doi.org/10.1061/9780784484470.044

Bachman, W.B., Sun, J., Liu, D., Wang, Y., Wildey, T., & Wildey, T. (2022). A Stochastic Reduced-Order Model for Statistical Microstructure Descriptors Evolution. Journal of Computing and Information Science in Engineering, 22(6). https://doi.org/10.1115/1.4054237

Kononov, A., Lee, C.W., dos Santos, T.P., Robinson, B., Yao, Y., Yao, Y., Andrade, X., Baczewski, A.D., Constantinescu, E., Correa, A.A., Kanai, Y., Modine, N.A., Schleife, A., & Schleife, A. (2022). Electron dynamics in extended systems within real-time time-dependent density-functional theory. MRS Communications, 12(6), pp. 1002-1014. https://doi.org/10.1557/s43579-022-00273-7

D'Elia, M., Glusa, C., & Glusa, C. (2022). A fractional model for anomalous diffusion with increased variability: Analysis, algorithms and applications to interface problems. Numerical Methods for Partial Differential Equations, 38(6), pp. 2084-2103. https://doi.org/10.1002/num.22865

Brooks, D.M., Swiler, L.P., Stein, E., Mariner, P.E., Basurto, E., Portone, T., Eckert, A., Leone, R.C., & Leone, R.C. (2022). Sensitivity analysis of generic deep geologic repository with focus on spatial heterogeneity induced by stochastic fracture network generation. Advances in Water Resources, 169. https://doi.org/10.1016/j.advwatres.2022.104310

Fiedler, L., Modine, N.A., Schmerler, S., Vogel, D.J., Popoola, G.A., Thompson, A.P., Rajamanickam, S., Cangi, A., & Cangi, A. (2022). Predicting the Electronic Structure of Matter on Ultra-Large Scales. https://doi.org/10.2172/1895024

Eldred, C., Guba, O., Taylor, M.A., & Taylor, M.A. (2022). Thermodynamically consistent versions of approximations used in modelling moist air. Quarterly Journal of the Royal Meteorological Society, 148(748), pp. 3184-3210. https://doi.org/10.1002/qj.4353

Branch, B.A., Ruggles, T., Miers, J.C., Massey, C., Moore, D., Brown, N., Duwal, S., Silling, S.A., Mitchell, J.A., Specht, P.E., & Specht, P.E. (2022). Understanding Phase and Interfacial Effects of Spall Fracture in Additively Manufactured Ti-5Al-5V-5Mo-3Cr. https://doi.org/10.2172/1892129

Polonsky, A., Martinez, C., Appleby, C.A., Bernard, S.R., Griego, J.G., Noell, P., Pathare, P.R., & Pathare, P.R. (2022). Super-Resolution Approaches in Three-Dimensions for Classification and Screening of Commercial-Off-The-Shelf Components. https://doi.org/10.2172/1890107

Bidadi, S., Brazell, M., Brunhart-Lupo, N., Henry de Frahan, M.T., Lee, D.H., Hu, J.J., Melvin, J., Mullowney, P., Vijayakumar, G., Moser, R.D., Rood, J., Sakievich, P., Sharma, A., Williams, A.B., Sprague, M.A., & Sprague, M.A. (2022). Demonstrate multi-turbine simulation with hybrid-structured / unstructured-moving-grid software stack running primarily on GPUs and propose improvements for successful KPP-2. https://doi.org/10.2172/1891592

Cardwell, S.G., Plagge, M., Hughes, C., Rothganger, F., Agarwal, S., Feinberg, B., Awad, A., McFarland, J., Parker, L., & Parker, L. (2022). ATHENA: Analytical Tool for Heterogeneous Neuromorphic Architectures. https://doi.org/10.2172/1890038

Wood, M.A., Nikolov, S.V., Rohskopf, A.D., Desjarlais, M.P., Cangi, A., Tranchida, J., & Tranchida, J. (2022). Quantum-Accurate Multiscale Modeling of Shock Hugoniots, Ramp Compression Paths, Structural and Magnetic Phase Transitions, and Transport Properties in Highly Compressed Metals. https://doi.org/10.2172/1898251

D'Elia, M., Bochev, P., Foster, J.T., Glusa, C., Gulian, M., Gunzburger, M., Trageser, J., Kuhlman, K.L., Martinez, M., Najm, H.N., Silling, S.A., Tupek, M., Xu, X., & Xu, X. (2022). Mathematical Foundations for Nonlocal Interface Problems: Multiscale Simulations of Heterogeneous Materials (Final LDRD Report). https://doi.org/10.2172/1888162

Laforce, T., Basurto, E., Chang, K.W., Ebeida, M., Eymold, W., Faucett, C.A., Jayne, R., Kucinski, N., Leone, R.C., Mariner, P.E., Bachman, W.B., & Bachman, W.B. (2022). GDSA Repository Systems Analysis Investigations in FY2022. https://doi.org/10.2172/1898245

Mahadevan, V.S., Guerra, J.E., Jiao, X., Kuberry, P., Li, Y., Ullrich, P., Marsico, D., Jacob, R., Bochev, P., Jones, P., & Jones, P. (2022). Metrics for Intercomparison of Remapping Algorithms (MIRA) protocol applied to Earth system models. Geoscientific Model Development, 15(17), pp. 6601-6635. https://doi.org/10.5194/gmd-15-6601-2022

Robinson, A.C., Swan, M.S., Harvey, E.C., Klein, B., Lawson, G., Milewicz, R.M., Bachman, W.B., Schmitz, M.E., Warnock, S.A., & Warnock, S.A. (2022). An introduction to developing GitLab/Jacamar runner analyst centric workflows at Sandia. https://doi.org/10.2172/1885645

Hansen, S.B., Baczewski, A.D., Gomez, T., Hentschel, T.W., Jennings, C.A., Kononov, A., Nagayama, T., Adler, K., Cangi, A., Cochrane, K.R., Bachman, W.B., Schleife, A., & Schleife, A. (2022). Improving Predictive Capability in REHEDS Simulations with Fast, Accurate, and Consistent Non-Equilibrium Material Properties. https://doi.org/10.2172/1890268

Cartwright, K.L., Pointon, T.D., Powell, T.C., Grabowski, T.C., Shields, S., Sirajuddin, D., Jensen, D.S., Renk, T.J., Cyr, E.C., Stafford, D., Swan, M.S., Mitra, S.S., McDoniel, W., Moore, C.H., & Moore, C.H. (2022). Progress in Modeling the 2019 Extended Magnetically Insulated Transmission Line (MITL) and Courtyard Environment Trial at HERMES-III. https://doi.org/10.2172/1890050

Modine, N.A., Stephens, J.A., Swiler, L.P., Thompson, A.P., Vogel, D.J., Cangi, A., Feilder, L., Rajamanickam, S., & Rajamanickam, S. (2022). Accelerating Multiscale Materials Modeling with Machine Learning. https://doi.org/10.2172/1889336

Maupin, K.A., Bachman, W.B., Bachman, W.B., Knapp, P.F., Joseph, V.R., Wu, C.F.J., Glinsky, M.E., Valaitis, S.M., & Valaitis, S.M. (2022). Towards Z-Next: The Integration of Theory, Experiments, and Computational Simulation in a Bayesian Data Assimilation Framework. https://doi.org/10.2172/1891191

White, R.D., Alexanderian, A., Karbalaeisadegh, Y., Bekele-Maxwell, K., Banks, H.T., Talmant, M., Grimal, Q., Muller, M., & Muller, M. (2022). Using ultrasonic attenuation in cortical bone to infer distributions on pore size. Applied Mathematical Modelling, 109, pp. 819-832. https://doi.org/10.1016/j.apm.2022.05.024

Eldred, M., Adams, B.M., Geraci, G., Portone, T., Ridgway, E.M., Stephens, J.A., Wildey, T., & Wildey, T. (2022). Deployment of Multifidelity Uncertainty Quantification for Thermal Battery Assessment Part I: Algorithms and Single Cell Results. https://doi.org/10.2172/1885882

Bachman, W.B., Portone, T., Dandekar, R., Rackauckas, C., Bandy, R.J., Huerta, J.G., Dytzel, I., & Dytzel, I. (2022). Model-Form Epistemic Uncertainty Quantification for Modeling with Differential Equations: Application to Epidemiology. https://doi.org/10.2172/1888443

Eydenberg, M.S., Batsch-Smith, L., Bice, C., Blakely, L., Bynum, M., Boukouvala, F., Castillo, A., Haddad, J., Hart, W.E., Jalving, J., Kilwein, Z., Laird, C., Skolfield, J.K., & Skolfield, J.K. (2022). Resilience Enhancements through Deep Learning Yields. https://doi.org/10.2172/1890044

Jakeman, J.D., Eldred, M., Geraci, G., Seidl, D.T., Smith, T.M., Gorodetsky, A.A., Pham, T., Narayan, A., Zeng, X., Ghanem, R., & Ghanem, R. (2022). Multi-fidelity information fusion and resource allocation. https://doi.org/10.2172/1888363

Swiler, L.P., Basurto, E., Brooks, D.M., Eckert, A., Leone, R.C., Mariner, P.E., Portone, T., Bachman, W.B., & Bachman, W.B. (2022). Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022). https://doi.org/10.2172/1884909

Tezaur, I.K., Peterson, K., Powell, A.J., Jakeman, J.D., Roesler, E.L., & Roesler, E.L. (2022). Global Sensitivity Analysis Using the Ultra-Low Resolution Energy Exascale Earth System Model. Journal of Advances in Modeling Earth Systems, 14(8). https://doi.org/10.1029/2021ms002831

Turner, E.M., Campbell, Q.T., Avci, I., Weber, W.J., Lu, P., Wang, G.T., Jones, K.S., & Jones, K.S. (2022). Selective amorphization of SiGe in Si/SiGe nanostructures via high energy Si+ implant. Journal of Applied Physics, 132(3). https://doi.org/10.1063/5.0094185

Jakeman, J.D., Friedman, S., Eldred, M., Tamellini, L., Gorodetsky, A.A., Allaire, D., & Allaire, D. (2022). Adaptive experimental design for multi-fidelity surrogate modeling of multi-disciplinary systems. International Journal for Numerical Methods in Engineering, 123(12), pp. 2760-2790. https://doi.org/10.1002/nme.6958

Guo, Z., Song, J.K., Barbastathis, G., Vaughan, C.T., Larson, K.W., Alpert, B.K., Levine, Z.H., Glinsky, M.E., & Glinsky, M.E. (2022). Physics-assisted generative adversarial network for X-ray tomography. Optics Express, 30(13), pp. 23238-23259. https://doi.org/10.1364/oe.460208

Schonbein, W., Barrett, B.W., Brightwell, R.B., Grant, R.E., Hemmert, K.S., Bachman, W.B., Underwood, K., Riesen, R., Hoefler, T., Barbe, M., Suraty Filho, L.H., Ratchov, A., MacCabe, A.B., & MacCabe, A.B. (2022). The Portals 4.3 Network Programming Interface. https://doi.org/10.2172/1875218

Tomas, I., Shadid, J.N., Maier, M., Salgado, A., & Salgado, A. (2022). Asymptotic preserving methods for fluid electron-fluid models in the large magnetic field limit with mathematically guaranteed properties (Final Report). https://doi.org/10.2172/1872178

Rezaul Karim, M., Narasimhachary, S., Radaelli, F., Amann, C., Dayal, K., Silling, S.A., Germann, T.C., & Germann, T.C. (2022). Crack nucleation at forging flaws studied by non-local peridynamics simulations. Mathematics and Mechanics of Solids, 27(6), pp. 1129-1149. https://doi.org/10.1177/10812865211057211

Clark, S.M., Norris, H., Landahl, A.J., Yale, C.G., Lobser, D., van der Wall, J.W., Revelle, M., & Revelle, M. (2022). QSCOUT Progress Report, June 2022 [Quantum Scientific Computing Open User Testbed]. https://doi.org/10.2172/1873977

Ruzic, B., Barrick, T.A., Hunker, J.D., Law, R.J., McFarland, B., McGuinness, H.J.E., Parazzoli, L.P., Sterk, J.D., van der Wall, J.W., Stick, D., & Stick, D. (2022). Entangling-gate error from coherently displaced motional modes of trapped ions. Physical Review A, 105(5). https://doi.org/10.1103/physreva.105.052409

Xiao, T.P., Feinberg, B., Bennett, C., Agrawal, V., Saxena, P., Prabhakar, V., Ramkumar, K., Medu, H., Raghavan, V., Chettuvetty, R., Agarwal, S., Marinella, M., & Marinella, M. (2022). An Accurate, Error-Tolerant, and Energy-Efficient Neural Network Inference Engine Based on SONOS Analog Memory. IEEE Transactions on Circuits and Systems I: Regular Papers, 69(4), pp. 1480-1493. https://doi.org/10.1109/tcsi.2021.3134313

Results 1–100 of 9,998
Results 1–100 of 9,998