Publications / SAND Report

Super-Resolution Approaches in Three-Dimensions for Classification and Screening of Commercial-Off-The-Shelf Components

Polonsky, Andrew P.; Martinez, Carianne M.; Appleby, Catherine A.; Bernard, Sylvain R.; Griego, J.J.M.; Noell, Philip N.; Pathare, Priya R.

X-ray computed tomography is generally a primary step in characterization of defective electronic components, but is generally too slow to screen large lots of components. Super-resolution imaging approaches, in which higher-resolution data is inferred from lower-resolution images, have the potential to substantially reduce collection times for data volumes accessible via x-ray computed tomography. Here we seek to advance existing two-dimensional super-resolution approaches directly to three-dimensional computed tomography data. Multiple scan resolutions over a half order of magnitude of resolution were collected for four classes of commercial electronic components to serve as training data for a deep-learning, super-resolution network. A modular python framework for three-dimensional super-resolution of computed tomography data has been developed and trained over multiple classes of electronic components. Initial training and testing demonstrate the vast promise for these approaches, which have the potential for more than an order of magnitude reduction in collection time for electronic component screening.