Philip Miller

Senior Member of the Technical Staff

Author profile picture

Senior Member of the Technical Staff

prmille@sandia.gov

(505) 845-9305

Sandia National Laboratories, New Mexico
P.O. Box 5800
Albuquerque, NM 87185-0892

Biography

Miller is interested studying biological systems via creation of devices/sensor systems capable of providing new insight into these hard to decipher physiological processes. Some of my recent work includes, development of microneedle sensors for monitoring stress in plants and ingestible capsules for sample collection in the GI tract.

Education

Bachelor’s Degree: Mechanical Engineering, North Carolina State University (2004-2008)

Doctoral Degree: Biomedical Engineering, Joint Department between University of North Carolina and North Carolina State University (2009-2015)

Postdoctoral Fellowships: Sandia National Laboratories (2015-2017)

Miller’s graduate research focused on creation of microneedle-based electrochemical sensing systems for wearable diagnostics applications. Multiplexed systems were developed for mapping biochemical profiles in skin or for characterizing complex microenvironments. In addition to sensor development, novel methods for hollow metal microneedle fabrication were investigated and produced arrays of microneedles on a flexible substrate.

Research Interests

Minimally Invasive Plant Sensors

Microneedle sensors for monitoring biotic and abiotic stresses in plants via impedance, turgor, and metabolite sensing systems are under development. Initial results show that the insertion and continual use of the microneedles in plants are well tolerated and do not initiate a toxic response. These devices can be placed into delicate tissue (e.g. leaves), but are strong enough to puncture and record signal from harder tissue (e.g. crown roots). Tissue specific impedance sensors can probe different leaf anatomy for monitoring hydration status and transport, and metabolite sensors are under development for tracking sugar transport.

Ingestible Sample Collector

No minimally invasive mechanisms exist for studying the GI tract. Miller is developing a swallowable capsule that can autonomously open and close a hermetically sealable valve to collect a biological sample in the upper GI tract. Various diseases are associated with the brain gut axis and fluctuating microbial communities may exhibit varying biochemical profiles that could be used as a diagnostic source. A capsule that can actuate a valve based on a specific organ system, collect the sample, and protect the sample from contamination is under development.

Publications

  • Laity, G., Robinson, A., Cuneo, M., Alam, M., Beckwith, K., Bennett, N., Bettencourt, M.T., Bond, S., Cochrane, K., Criscenti, L.J., Cyr, E., De Zetter, K., Drake, R., Evstatiev, E., Fierro, A., Gardiner, T., Glines, F., Goeke, R., Hamlin, N., … McBride, R. (2021). Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report). https://doi.org/10.2172/1813907 Publication ID: 75144
  • Wheeler, L., Glen, A., Roesler, E., Bowman, D., Miller, P., Sanchez, A.L., Dexheimer, D., Rohr, G., Pfeifer, K., Sharp, Z., Wostbrock, J., & Wostbrock, J. (2020). Observations of Stratospheric Aerosols from Heliotrope Solar Hot Air Balloons [Conference Poster]. https://doi.org/10.2172/1835008 Publication ID: 72104
  • Wheeler, L., Roesler, E., Bowman, D., Dexheimer, D., Hillman, B., Sanchez, A.L., Glen, A., Miller, P., Hardesty, J., Wostbrock, J., Sharp, Z., & Sharp, Z. (2019). Towards isotopically-enabled models of the stratosphere with implications for geoengineering [Conference Poster]. https://www.osti.gov/biblio/1643443 Publication ID: 66764
  • Anthony, S.M., Miller, P., Timlin, J., Polsky, R., & Polsky, R. (2019). Imaging effectiveness calculator for non-design microscope samples. Applied Optics, 58(22), pp. 6027-6037. https://doi.org/10.1364/AO.58.006027 Publication ID: 65323
  • Miller, P., Branda, S., Polsky, R., Baca, J., & Baca, J. (2018). Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Communications Biology, 1(1). https://doi.org/10.1038/s42003-018-0170-z Publication ID: 80709
  • Wang, G., Coltrin, M., Lu, P., Miller, P., Leung, B., Xiao, X., Sapkota, K.R., Leonard, F., Bran Anleu, G., Koleske, D., Tsao, J., Balakrishnan, G., Addamane, S., Nelson, J., & Nelson, J. (2018). Quantum Nanofabrication: Mechanisms and Fundamental Limits. https://doi.org/10.2172/1474257 Publication ID: 59079
  • Manginell, R., Moorman, M., Simonson, R., Anderson, J., Sammon, J., Miller, P., Pfeifer, K., Whiting, J., Manginell, R., & Manginell, R. (2018). Field Portable Micro GC and Micro GCxGC System Development for Chemicals and Biogenic VOCs [Conference Poster]. https://www.osti.gov/biblio/1524266 Publication ID: 61994
  • Miller, P., Ackerman, E., & Ackerman, E. (2018). Sandia National Labs Microneedle and microGC Tech [Conference Poster]. https://www.osti.gov/biblio/1504561 Publication ID: 61318
  • Miller, P., Sammon, J., Moorman, M., Whiting, J., Simonson, R., Mowry, C., Pimentel, A., Manginell, R., Pfeifer, K., Achyuthan, K., & Achyuthan, K. (2018). Systems for Plant Volatile Organic Compound (VOC) Analysis [Conference Poster]. https://www.osti.gov/biblio/1500200 Publication ID: 61078
  • Miller, P., Sammon, J., Polsky, R., Pfeifer, N., Ackerman, E., & Ackerman, E. (2018). Microneedle Sensors for in situ Measurements in Sorghum [Conference Poster]. https://www.osti.gov/biblio/1500201 Publication ID: 61077
  • Miller, P., Miller, P., Miller, P., & Miller, P. (2018). Tissue specific electrical impedance spectroscopy [Conference Poster]. https://www.osti.gov/biblio/1495753 Publication ID: 60676
  • Miller, P. (2018). Microneedles as Wearable Sensors for Plants [Conference Poster]. https://www.osti.gov/biblio/1495752 Publication ID: 60677
  • Moorman, M., Manginell, R., Simonson, R., Mowry, C., Miller, P., Pfeifer, K., Achyuthan, K., & Achyuthan, K. (2017). Systems for Plant Volatile Organic Compound (VOC) Analysis [Conference Poster]. https://www.osti.gov/biblio/1488338 Publication ID: 54672
  • Miller, P., Polsky, R., Pfeifer, N., & Pfeifer, N. (2017). Microneedles for wearable sensing and interstitial fluid collection [Conference Poster]. https://www.osti.gov/biblio/1485722 Publication ID: 54589
  • Miller, P., Polsky, R., & Polsky, R. (2017). Microneedles for Wearable Sensing and Interstitial Fluid Collection [Conference Poster]. https://www.osti.gov/biblio/1478301 Publication ID: 53602
  • Wang, G., Leung, B., Xiao, X., Fischer, A., Lu, P., Miller, P., Tsai, M., Koleske, D., Coltrin, M., Tsao, J., & Tsao, J. (2017). Quantum Size Controlled Etching of InGaN Quantum Dots [Conference Poster]. https://www.osti.gov/biblio/1463430 Publication ID: 57755
  • Wang, G., Leung, B., Xiao, X., Fischer, A., Lu, P., Miller, P., Tsai, M., Koleske, D., Coltrin, M., Tsao, J., & Tsao, J. (2017). InGaN Quantum Dots by Quantum Size Controlled Photoelectrochemical Etching [Conference Poster]. https://www.osti.gov/biblio/1507893 Publication ID: 57482
  • Miller, P., Polsky, R., & Polsky, R. (2016). On Body Transdermal Microneedle-Based Diagnostic Device to Measure Biomarker Signatures and Report on Human Performance [Presentation]. https://www.osti.gov/biblio/1375607 Publication ID: 51670
  • Polsky, R., Miller, P., Rivas, R., Johnson, D., Edwards, T., Koskelo, M., Shawa, L., Brener, I., Chavez, V., & Chavez, V. (2015). Handheld Microneedle-Based Electrolyte Sensing Platform. https://doi.org/10.2172/1331523 Publication ID: 46492
  • Miller, P. (2015). Transdermal Electrochemical Sensing and Biosensing with Hollow Microneedles [Presentation]. https://www.osti.gov/biblio/1262623 Publication ID: 44306
  • Rivas, R., Miller, P., Polsky, R., & Polsky, R. (2015). Hand-Held Microneedle-Based Diagnostic Device [Conference Poster]. https://www.osti.gov/biblio/1268153 Publication ID: 44460
Showing 10 of 21 publications.

Selected Publications

  • Miller, Philip R., et al. “Microneedle-Based Sensors for Medical Diagnostics.”J Mat Chem B, 2016, 4, 1379-1383.
  • BQ Tran, Miller, Philip R., et al. “Proteomic Characterization of Dermal Interstitial Fluid Extracted Using a Novel Microneedle-Assisted Technique”J Proteome Research, 2018, 17(1), 479-485.
  • Miller, Philip R., et al. “Integrated carbon fiber electrodes within hollow polymer microneedles for transdermal electrochemical sensing.” Biomicrofluidics 5.1 (2011): 013415.
  • Miller, Philip R., et al. “Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis.” Talanta 88 (2012): 739-742.
  • Miller, Philip R., et al. “Microneedle‐Based Transdermal Sensor for On‐Chip Potentiometric Determination of K+Advanced healthcare materials (2013). Cover Picture.
  • Miller, Philip R., et al. “Electrodeposited Iron as a Biocompatible Material for Microneedle Fabrication.” Electroanalysis 27.9 (2015): 2239-2249.

Awards, Honors, and Memberships

  • Mentor Research Award (2015)
  • Biomedical Engineering Society (2016)
  • Tau Beta Pi (2009)