Sandia LabNews

NNSA honors Sandian for helping with new data tool roll-out


Image of <p>INFORMATION TECHNOLOGY HONOREE Sean Lee Hendrickson is Sandia's NNSA   Defense Programs Employee of the Quarter. Sean (9517) led the deployment   of the first production implementation of Oracle Data Integrator in   Sandia's Science and Engineering Information Systems and produced a map   for future migrations from Sandia's current tool. The conversion   required setting up new servers, training people, and figuring out how   to test and release the new tool. (Photo by Randy Montoya) <a href="/news/publications/labnews/archive/_assets/images/12-13-07/nnsa_800.jpg">View large image</a>. </p>

INFORMATION TECHNOLOGY HONOREE Sean Lee Hendrickson is Sandia’s NNSA Defense Programs Employee of the Quarter. Sean (9517) led the deployment of the first production implementation of Oracle Data Integrator in Sandia’s Science and Engineering Information Systems and produced a map for future migrations from Sandia’s current tool. The conversion required setting up new servers, training people, and figuring out how to test and release the new tool. (Photo by Randy Montoya)

In the 1980s Tim Leonard was busy programming computers at Sandia, unaware that just down the hall work was going on that would change his life.

Tim was in the wind energy group, steps away from the people in solar energy. One of them was Alex Maish, starting his pet project, a low-cost, high-precision tracking technology to continuously move solar panels into the best possible position to catch sunlight and generate energy.

“I met Alex, but I didn’t really know what he was working on,” Tim says. “I would visit, say hi, and go back.”

Years later, after leaving the Labs, Tim ran into Alex at a local nursery. He filled Alex in on his business – programming and electronic upgrading of gaming machines – and confided that it wasn’t challenging.

Alex mentioned his solar-tracking technology. “He said it was being licensed but that none of the interested companies had been able to commercialize it. He needed someone to make some prototype [circuit] boards for an industry client,” Tim says. “I told him I’d take a look.”

Tim helped Alex with electronics and programming, and liked the technology so much he licensed it himself in the mid-1990s. He built a business, Precision Solar Technologies Corp., and placed trackers around the world. Among Tim’s customers is Sandia, where the technology was developed and where many solar devices are fitted with his trackers, including at the National Solar Thermal Test Facility.

“We’re now into 16 years of commercial use and thousands of unit-hours of performance,” Tim says.

Celestial equations

Alex’s goal was to develop affordable precision tracking for solar energy research, development, and production. His technology – trademarked SolarTrak by Sandia, which holds the patent – is a software program in a computer chip that sits on an electronic circuit board that controls the tracker.

Unlike sensor-based controllers, SolarTrak uses celestial equations to calculate the exact position of the sun at any time, anywhere on the planet, regardless of cloud cover. “This can be critical in partly cloudy situations where the bright edge of a cloud can fool a sensor,” Tim says.

SolarTrak determines the sun’s location, makes decisions based on its angle, and turns on machinery that moves solar equipment into position. It factors wind speed and other external information into performance.

“The computer uses electronic feedback to monitor where the machinery is in its range of motion. With that information and the position of the sun, it makes the two coincide,” Tim says. “It’s a simple process. It’s prudent to hook up a PC every few months and check the clock, but mostly it runs and runs.”

SolarTrak technology has been used in commercial, industrial, residential, and research applications. Precision Solar Technologies has put controllers to work in heliostat projects, solar furnace applications, solar trough facilities, photovoltaics, and fiber optic daylighting research, bringing natural light deep into the interiors of buildings.

Hundreds of SolarTrak controllers are in commercial use in 18 countries and have been used in research projects at Sandia and Oak Ridge national laboratories, Rensselaer Polytechnic Institute in New York, Walt Disney Imagineering, the University of Loughborough and the University of Reading in the United Kingdom, US universities, and private-sector entities including Emcore, Amonix, and Los Alamos Research Associates.

“I’ve put a SolarTrak controller on everything I know of that moves and has to point at the sun,” Tim says.

An offer from Sandia

Tim grew up in Washington, D.C., and moved to Albuquerque in 1973 to attend the University of New Mexico. He studied architecture and learned computer programming in engineering courses included in the curriculum. He continued to study mechanical engineering after earning a bachelor’s degree in 1977.

Tim went to work as a programmer for the Civil Engineering Research Facility, CERF, that was part of UNM’s engineering department. “One day a fellow from CERF came in, sat on my desk, asked a few questions about programming and engineering structures, and asked if I wanted to be a contractor at Sandia working on their mainframe computers and doing structural analysis on the vertical axis wind turbine,” he says. “Suffice it to say I said yes.”

Tim joined the Labs’ wind energy program as a contractor in 1977. He left nine years later and was quickly hired back as Labs staff by his supervisor Dick Braasch. “I went back to my old office and not a piece of paper or pencil had been moved since I left three months earlier,” Tim says. “Dick brought me back in, and it was a great feeling of belonging.”

He stayed another five years, working in a variety of areas as his old friends in the wind group moved on to other projects.

Using the programming, assembly, and structural skills he developed at Sandia, Tim was hired by companies in the early 1990s to work on video gaming machines. That work taught Tim electronics. “I started designing digital boards and creating more elaborate games,” he says.

Tim ran into Alex in early 1995 and licensed the solar tracking technology about a year later. Alex was still working on the project at

Sandia, and he and Tim fine-tuned the technology to get it commercialized. “Alex was eight years into it when we started working together,” he says. “It became a joint venture.”

Tim built the business through word of mouth and a website. His first customer was a researcher at the University of Australia in Canberra. Other early customers included Arizona Public Service and Amonix, where Tim installed his first high-powered, large piece of tracking equipment, on a 30- by 40-foot, 19,000-pound array.

Tim’s signature product is the Prospector, a stand-alone solar weather station to measure solar and atmospheric environments.

In addition to the station, Precision Solar produces other full systems that include motors, gear drives, mechanical arms, and frames that hold and move the solar arrays for power production or research. The company does new systems and retrofits older ones. Tim works from a home base in Tijeras with an electronics and assembly workshop, forklift, and loading dock to send trackers to far-off places.

Energy savings

Tim says doing work for Sandia helped him develop the business. “Sandia wanted a lower-cost tracker for their sun sensors, and that led to the Prospector,” he says. “I also did a solar data acquisition system for another person at Sandia as well as other ancillary projects.  Each time they approached me with a niche project it became a potential product line.”

Rich Diver, a retired Sandian and solar engineering consultant, says Tim’s trackers are cost-effective and “very robust.” “The Prospector is a really nice product,” he says. “It works well.”

Santa Fe resident Ricardo Sanchez remembers going to Sandia, where his dad worked, and looking up at the solar tower. “I was amazed at what it could do,” he says. “I was really psyched to have that type of technology on my home.”

About five years ago, Sanchez installed 13 fixed solar thermal panels on his roof, but they didn’t generate enough heat. “I met Tim and went with his mirror heliostat tracker that reflects sunlight onto the panels. It took my system from something that didn’t work to something that worked,” he says. “I used to have a $500 a month heating bill in the winter. Now it’s $700 for the whole season. The tracker is perfect. I don’t do a thing. It just works.”

Tim says he’s never regretted taking on the business. “I grew up with Erector sets and Lincoln Logs and was making things that moved since I was very young. Then I learned computers and electronics,” he says. “This business has brought together every single aspect of everything I have learned either in school or on my own.”

Alex died in 2005 after a lifelong struggle with cystic fibrosis. He lived to see the beginnings of a business founded on his technology. Tim says he and Alex became best of friends and that he believes Alex would have been proud of the growth of the business and that it accomplished his goal of bringing down the once-astronomical cost of precision solar tracking.

“To this day, every (circuit) board I make says ‘Originally developed at Sandia Labs’,” Tim says. “Alex gets the credit. I’m still looking for my first opportunity to dedicate a precision solar field in his name.”