Publications

Results 1–25 of 58
Skip to search filters

Adverse Event Prediction Using Graph-Augmented Temporal Analysis: Final Report

Brost, Randolph B.; Carrier, Erin E.; Carroll, Michelle C.; Groth, Katrina M.; Kegelmeyer, William P.; Leung, Vitus J.; Link, Hamilton E.; Patterson, Andrew J.; Phillips, Cynthia A.; Richter, Samuel N.; Robinson, David G.; Staid, Andrea S.; Woodbridge, Diane M.-K.

This report summarizes the work performed under the Sandia LDRD project "Adverse Event Prediction Using Graph-Augmented Temporal Analysis." The goal of the project was to de- velop a method for analyzing multiple time-series data streams to identify precursors provid- ing advance warning of the potential occurrence of events of interest. The proposed approach combined temporal analysis of each data stream with reasoning about relationships between data streams using a geospatial-temporal semantic graph. This class of problems is relevant to several important topics of national interest. In the course of this work we developed new temporal analysis techniques, including temporal analysis using Markov Chain Monte Carlo techniques, temporal shift algorithms to refine forecasts, and a version of Ripley's K-function extended to support temporal precursor identification. This report summarizes the project's major accomplishments, and gathers the abstracts and references for the publication sub- missions and reports that were prepared as part of this work. We then describe work in progress that is not yet ready for publication.

More Details

Analysis of Microgrid Locations Benefitting Community Resilience for Puerto Rico

Jeffers, Robert F.; Staid, Andrea S.; Baca, Michael J.; Currie, Frank M.; Fogleman, William; DeRosa, Sean D.; Wachtel, Amanda; Outkin, Alexander V.

An analysis of microgrids to increase resilience was conducted for the island of Puerto Rico. Critical infrastructure throughout the island was mapped to the key services provided by those sectors to help inform primary and secondary service sources during a major disruption to the electrical grid. Additionally, a resilience metric of burden was developed to quantify community resilience, and a related baseline resilience figure was calculated for the area. To improve resilience, Sandia performed an analysis of where clusters of critical infrastructure are located and used these suggested resilience node locations to create a portfolio of 159 microgrid options throughout Puerto Rico. The team then calculated the impact of these microgrids on the region's ability to provide critical services during an outage, and compared this impact to high-level estimates of cost for each microgrid to generate a set of efficient microgrid portfolios costing in the range of $218-$917M. This analysis is a refinement of the analysis delivered on June 01, 2018.

More Details

Critical Infrastructure Decision-Making under Long-Term Climate Hazard Uncertainty: The Need for an Integrated, Multidisciplinary Approach

Staid, Andrea S.; Fleming Lindsley, Elizabeth S.; Gunda, Thushara G.; Jackson, Nicole D.

U.S. critical infrastructure assets are often designed to operate for decades, and yet long-term planning practices have historically ignored climate change. With the current pace of changing operational conditions and severe weather hazards, research is needed to improve our ability to translate complex, uncertain risk assessment data into actionable inputs to improve decision-making for infrastructure planning. Decisions made today need to explicitly account for climate change – the chronic stressors, the evolution of severe weather events, and the wide-ranging uncertainties. If done well, decision making with climate in mind will result in increased resilience and decreased impacts to our lives, economies, and national security. We present a three-tier approach to create the research products needed in this space: bringing together climate projection data, severe weather event modeling, asset-level impacts, and contextspecific decision constraints and requirements. At each step, it is crucial to capture uncertainties and to communicate those uncertainties to decision-makers. While many components of the necessary research are mature (i.e., climate projection data), there has been little effort to develop proven tools for long-term planning in this space. The combination of chronic and acute stressors, spatial and temporal uncertainties, and interdependencies among infrastructure sectors coalesce into a complex decision space. By applying known methods from decision science and data analysis, we can work to demonstrate the value of an interdisciplinary approach to climate-hazard decision making for longterm infrastructure planning.

More Details

Dakota-NAERM Integration

Swiler, Laura P.; Newman, Sarah N.; Staid, Andrea S.; Barrett, Emily B.

This report presents the results of a collaborative effort under the Verification, Validation, and Uncertainty Quantification (VVUQ) thrust area of the North American Energy Resilience Model (NAERM) program. The goal of the effort described in this report was to integrate the Dakota software with the NAERM software framework to demonstrate sensitivity analysis of a co-simulation for NAERM.

More Details

Dynamic Multi-Sensor Multi-Mission Optimal Planning Tool

Valicka, Christopher G.; Rowe, Stephen R.; Zou, Simon Z.; Mitchell, Scott A.; Irelan, William R.; Pollard, Eric L.; Garcia, Deanna G.; Hackebeil, Gabriel A.; Staid, Andrea S.; Rintoul, Mark D.; Watson, Jean-Paul W.; Hart, William E.; Rathinam, Sivakumar R.; Ntaimo, Lewis N.

Remote sensing systems have firmly established a role in providing immense value to commercial industry, scientific exploration, and national security. Continued maturation of sensing technology has reduced the cost of deploying highly-capable sensors while at the same time increased reliance on the information these sensors can provide. The demand for time on these sensors is unlikely to diminish. Coordination of next-generation sensor systems, larger constellations of satellites, unmanned aerial vehicles, ground telescopes, etc. is prohibitively complex for existing heuristics- based scheduling techniques. The project was a two-year collaboration spanning multiple Sandia centers and included a partnership with Texas A&M University. We have developed algorithms and software for collection scheduling, remote sensor field-of-view pointing models, and bandwidth- constrained prioritization of sensor data. Our approach followed best practices from the operations research and computational geometry communities. These models provide several advantages over state of the art techniques. In particular, our approach is more flexible compared to heuristics that tightly couple models and solution techniques. First, our mixed-integer linear models afford a rig- orous analysis so that sensor planners can quantitatively describe a schedule relative to the best possible. Optimal or near-optimal schedules can be produced with commercial solvers in opera- tional run-times. These models can be modified and extended to incorporate different scheduling and resource constraints and objective function definitions. Further, we have extended these mod- els to proactively schedule sensors under weather and ad hoc collection uncertainty. This approach stands in contrast to existing deterministic schedulers which assume a single future weather or ad hoc collection scenario. The field-of-view pointing algorithm produces a mosaic with the fewest number of images required to fully cover a region of interest. The bandwidth-constrained al- gorithms find the highest priority information that can be transmitted. All of these are based on mixed-integer linear programs so that, in the future, collection scheduling, field-of-view, and band- width prioritization can be combined into a single problem. Experiments conducted using the de- veloped models, commercial solvers, and benchmark datasets have demonstrated that proactively scheduling against uncertainty regularly and significantly outperforms deterministic schedulers. Acknowledgement We would like to acknowledge John T. Feddema, Brian N. Post, John H. Ganter, and Swaroop Darbha for providing critical project stewardship and fruitful remote sensing utilization discus- sions. A special thanks to Mohamed S. Ebeida for his contributions to the development of the Maximal Poisson Sampling technique. We would also like to thank Kaarthik Sundar and Jianglei Qin for their significant scheduling algorithm and model development contributions to the project. The authors would like to acknowledge the Sandia LDRD program for their support of this work. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Cor- poration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

More Details

Generating short-term probabilistic wind power scenarios via nonparametric forecast error density estimators

Wind Energy

Staid, Andrea S.; Watson, Jean-Paul W.; Wets, Roger J.B.; Woodruff, David L.

Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost-effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power time series. We estimate nonparametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and nonparametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured. We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Our methodology is embodied in the joint Sandia–University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.

More Details
Results 1–25 of 58
Results 1–25 of 58