Gas Chromatography with locally concentrated stationary layers
Journal of Fluid Mechanics
Abstract not provided.
Journal of Fluid Mechanics
Abstract not provided.
Human Factors
Abstract not provided.
Abstract not provided.
Abstract not provided.
An experiment was conducted comparing the effectiveness of individual versus group electronic brainstorming in order to address difficult, real world challenges. While industrial reliance on electronic communications has become ubiquitous, empirical and theoretical understanding of the bounds of its effectiveness have been limited. Previous research using short-term, laboratory experiments have engaged small groups of students in answering questions irrelevant to an industrial setting. The present experiment extends current findings beyond the laboratory to larger groups of real-world employees addressing organization-relevant challenges over the course of four days. Employees and contractors at a national security laboratory participated, either in a group setting or individually, in an electronic brainstorm to pose solutions to a 'wickedly' difficult problem. The data demonstrate that (for this design) individuals perform at least as well as groups in producing quantity of electronic ideas, regardless of brainstorming duration. However, when judged with respect to quality along three dimensions (originality, feasibility, and effectiveness), the individuals significantly (p<0.05) out-performed the group working together. When idea quality is used as the benchmark of success, these data indicate that work-relevant challenges are better solved by aggregating electronic individual responses, rather than electronically convening a group. This research suggests that industrial reliance upon electronic problem solving groups should be tempered, and large nominal groups might be the more appropriate vehicle for solving wicked corporate issues.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Artificial Intelligence Research
Abstract not provided.
Abstract not provided.
Abstract not provided.
Globally, there is no lack of security threats. Many of them demand priority engagement and there can never be adequate resources to address all threats. In this context, climate is just another aspect of global security and the Arctic just another region. In light of physical and budgetary constraints, new security needs must be integrated and prioritized with existing ones. This discussion approaches the security impacts of climate from that perspective, starting with the broad security picture and establishing how climate may affect it. This method provides a different view from one that starts with climate and projects it, in isolation, as the source of a hypothetical security burden. That said, the Arctic does appear to present high-priority security challenges. Uncertainty in the timing of an ice-free Arctic affects how quickly it will become a security priority. Uncertainty in the emergent extreme and variable weather conditions will determine the difficulty (cost) of maintaining adequate security (order) in the area. The resolution of sovereignty boundaries affects the ability to enforce security measures, and the U.S. will most probably need a military presence to back-up negotiated sovereignty agreements. Without additional global warming, technology already allows the Arctic to become a strategic link in the global supply chain, possibly with northern Russia as its main hub. Additionally, the multinational corporations reaping the economic bounty may affect security tensions more than nation-states themselves. Countries will depend ever more heavily on the global supply chains. China has particular needs to protect its trade flows. In matters of security, nation-state and multinational-corporate interests will become heavily intertwined.
Abstract not provided.
Realistic cell models could greatly accelerate our ability to engineer biochemical pathways and the production of valuable organic products, which would be of great use in the development of biofuels, pharmaceuticals, and the crops for the next green revolution. However, this level of engineering will require a great deal more knowledge about the mechanisms of life than is currently available. In particular, we need to understand the interactome (which proteins interact) as it is situated in the three dimensional geometry of the cell (i.e., a situated interactome), and the regulation/dynamics of these interactions. Methods for optical proteomics have become available that allow the monitoring and even disruption/control of interacting proteins in living cells. Here, a range of these methods is reviewed with respect to their role in elucidating the interactome and the relevant spatial localizations. Development of these technologies and their integration into the core competencies of research organizations can position whole institutions and teams of researchers to lead in both the fundamental science and the engineering applications of cellular biology. That leadership could be particularly important with respect to problems of national urgency centered around security, biofuels, and healthcare.
Predictive simulation of systems comprised of numerous interconnected, tightly coupled components promises to help solve many problems of scientific and national interest. However predictive simulation of such systems is extremely challenging due to the coupling of a diverse set of physical and biological length and time scales. This report investigates un-certainty quantification methods for such systems that attempt to exploit their structure to gain computational efficiency. The traditional layering of uncertainty quantification around nonlinear solution processes is inverted to allow for heterogeneous uncertainty quantification methods to be applied to each component in a coupled system. Moreover this approach allows stochastic dimension reduction techniques to be applied at each coupling interface. The mathematical feasibility of these ideas is investigated in this report, and mathematical formulations for the resulting stochastically coupled nonlinear systems are developed.
Journal of Computational and Applied Mathematics
We present five new cubature formula in the triangle and square for exact integration of polynomials. The points were computed numerically with a cardinal function algorithm which does not impose any symmetry requirements on the points. Cubature formula are presented which integrate degrees 10, 11 and 12 in the triangle and degrees 10 and 12 in the square. They have positive weights, contain no points outside the domain, and have fewer points than previously known results. © 2007 Elsevier B.V. All rights reserved.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.