Multithreaded Sparse Kernels for Solution of Sparse Linear Systems
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Transactions on Visualization and Computer Graphics
The most common abstraction used by visualization libraries and applications today is what is known as the visualization pipeline. The visualization pipeline provides a mechanism to encapsulate algorithms and then couple them together in a variety of ways. The visualization pipeline has been in existence for over 20 years, and over this time many variations and improvements have been proposed. This paper provides a literature review of the most prevalent features of visualization pipelines and some of the most recent research directions. © 1995-2012 IEEE.
Journal of Computational Physics
We present a new approach to the simulation of gravity-driven viscous fingering instabilities in porous media flow. These instabilities play a very important role during carbon sequestration processes in brine aquifers. Our approach is based on a nonlinear implementation of the discontinuous Galerkin method, and possesses a number of key features. First, the method developed is inherently high order, and is therefore well suited to study unstable flow mechanisms. Secondly, it maintains high-order accuracy on completely unstructured meshes. The combination of these two features makes it a very appealing strategy in simulating the challenging flow patterns and very complex geometries of actual reservoirs and aquifers. This article includes an extensive set of verification studies on the stability and accuracy of the method, and also features a number of computations with unstructured grids and non-standard geometries.
Procedia Engineering
Hydrocarbon polymers and foams are utilized in high energy-density physics (HEDP) and inertial confinement fusion (ICF) experiments as tampers, energy conversion and radiation pulse shaping layers in dynamic hohlraum Z-pinches, and ablators in ICF capsule implosions. Shocked foams frequently are found to be mixed with other materials either by intentional doping with high-Z elements or by instabilities and turbulent mixing with surrounding materials. In this paper we present one-dimensional and three-dimensional mesoscale hydrodynamic simulations of high-Z doped poly-(4-methyl-1-pentene) (PMP or TPX) foams in order to examine the validity of various equation of state (EOS) mixing rules available in two state-of-the-art simulation codes. Platinum-doped PMP foam experiments conducted at Sandia's Z facility provide data that can be used to test EOS mixing rules. We apply Sandia's ALEGRA-MHD code and the joint LLNL/SNL KULL HEDP code to model these doped foam experiments and exercise the available EOS mixing methods. One-dimensional simulations homogenize the foam with platinum dopant and show which EOS mixing methods produce results that are consistent with measured Hugoniot states. These simulations produce sharp shock fronts that are well described by traditional Hugoniot relations. Three-dimensional mesoscale simulations explicitly model the foam structure embedded with discrete platinum particles. The heterogeneous structure of the foam results in diffuse shock fronts and an unsteady post-shock state with large fluctuations about an average state. We compare shock propagation through pure foam and Pt-doped foams (50-50 mixture by weight) at equal average initial density, and examine how well the results compare to the experimentally measured Hugoniot states. © 2013 The Authors.
Abstract not provided.
Proposed for publication in Journal of Computational Physics.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Physical Review Letters.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in International Journal for Numerical Methods in Engineering.
Abstract not provided.
Abstract not provided.