Gemma: An Electromagnetic Code for Heterogeneous Computer Architectures
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Computational Physics
The study of hypersonic flows and their underlying aerothermochemical reactions is particularly important in the design and analysis of vehicles exiting and reentering Earth's atmosphere. Computational physics codes can be employed to simulate these phenomena; however, code verification of these codes is necessary to certify their credibility. To date, few approaches have been presented for verifying codes that simulate hypersonic flows, especially flows reacting in thermochemical nonequilibrium. In this work, we present our code-verification techniques for verifying the spatial accuracy and thermochemical source term in hypersonic reacting flows in thermochemical nonequilibrium. Additionally, we demonstrate the effectiveness of these techniques on the Sandia Parallel Aerodynamics and Reentry Code (SPARC).
Abstract not provided.
Abstract not provided.
AIAA Aviation 2019 Forum
The study of hypersonic flows and their underlying aerothermochemical reactions is particularly important in the design and analysis of vehicles exiting and reentering Earth’s atmosphere. Computational physics codes can be employed to simulate these phenomena; however, code verification of these codes is necessary to certify their credibility. To date, few approaches have been presented for verifying codes that simulate hypersonic flows, especially flows reacting in thermochemical nonequilibrium. In this paper, we present our code-verification techniques for hypersonic reacting flows in thermochemical nonequilibrium, as well as their deployment in the Sandia Parallel Aerodynamics and Reentry Code (SPARC).
AIAA Scitech 2019 Forum
We propose a probabilistic framework for assessing the consistency of an experimental dataset, i.e., whether the stated experimental conditions are consistent with the measurements provided. In case the dataset is inconsistent, our framework allows one to hypothesize and test sources of inconsistencies. This is crucial in model validation efforts. The framework relies on statistical inference to estimate experimental settings deemed untrustworthy, from measurements deemed accurate. The quality of the inferred variables is gauged by its ability to reproduce held-out experimental measurements; if the new predictions are closer to measurements than before, the cause of the discrepancy is deemed to have been found. The framework brings together recent advances in the use of Bayesian inference and statistical emulators in fluid dynamics with similarity measures for random variables to construct the hypothesis testing approach. We test the framework on two double-cone experiments executed in the LENS-XX wind tunnel and one in the LENS-I tunnel; all three have encountered difficulties when used in model validation exercises. However, the cause behind the difficulties with the LENS-I experiment is known, and our inferential framework recovers it. We also detect an inconsistency with one of the LENS-XX experiments, and hypothesize three causes for it. We check two of the hypotheses using our framework, and we find evidence that rejects them. We end by proposing that uncertainty quantification methods be used more widely to understand experiments and characterize facilities, and we cite three different methods to do so, the third of which we present in this paper.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The SPARC (Sandia Parallel Aerodynamics and Reentry Code) will provide nuclear weapon qualification evidence for the random vibration and thermal environments created by re-entry of a warhead into the earth’s atmosphere. SPARC incorporates the innovative approaches of ATDM projects on several fronts including: effective harnessing of heterogeneous compute nodes using Kokkos, exascale-ready parallel scalability through asynchronous multi-tasking, uncertainty quantification through Sacado integration, implementation of state-of-the-art reentry physics and multiscale models, use of advanced verification and validation methods, and enabling of improved workflows for users. SPARC is being developed primarily for the Department of Energy nuclear weapon program, with additional development and use of the code is being supported by the Department of Defense for conventional weapons programs.