Publications

Results 76–94 of 94

Search results

Jump to search filters

Multifidelity statistical analysis of large eddy simulations in scramjet computations

AIAA Non-Deterministic Approaches Conference, 2018

Huan, Xun H.; Geraci, Gianluca G.; Safta, Cosmin S.; Eldred, Michael S.; Sargsyan, Khachik S.; Vane, Zachary P.; Oefelein, Joseph C.; Najm, H.N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress towards optimal engine designs requires accurate and computationally affordable flow simulations, as well as uncertainty quantification (UQ). While traditional UQ techniques can become prohibitive under expensive simulations and high-dimensional parameter spaces, polynomial chaos (PC) surrogate modeling is a useful tool for alleviating some of the computational burden. However, non-intrusive quadrature-based constructions of PC expansions relying on a single high-fidelity model can still be quite expensive. We thus introduce a two-stage numerical procedure for constructing PC surrogates while making use of multiple models of different fidelity. The first stage involves an initial dimension reduction through global sensitivity analysis using compressive sensing. The second stage utilizes adaptive sparse quadrature on a multifidelity expansion to compute PC surrogate coefficients in the reduced parameter space where quadrature methods can be more effective. The overall method is used to produce accurate surrogates and to propagate uncertainty induced by uncertain boundary conditions and turbulence model parameters, for performance quantities of interest from large eddy simulations of supersonic reactive flows inside a scramjet engine.

More Details

Multilevel-multifidelity approaches for forward uq in the DARPA SEQUOIA project

AIAA Non-Deterministic Approaches Conference, 2018

Eldred, Michael S.; Geraci, Gianluca G.; Gorodetsky, Alex; Jakeman, John D.

Within the SEQUOIA project, funded by the DARPA EQUiPS program, we pursue algorithmic approaches that enable comprehensive design under uncertainty, through inclusion of aleatory/parametric and epistemic/model form uncertainties within scalable forward/inverse UQ approaches. These statistical methods are embedded within design processes that manage computational expense through active subspace, multilevel-multifidelity, and reduced-order modeling approximations. To demonstrate these methods, we focus on the design of devices that involve multi-physics interactions in advanced aerospace vehicles. A particular problem of interest is the shape design of nozzles for advanced vehicles such as the Northrop Grumman UCAS X-47B, involving coupled aero-structural-thermal simulations for nozzle performance. In this paper, we explore a combination of multilevel and multifidelity forward and inverse UQ algorithms to reduce the overall computational cost of the analysis by leveraging hierarchies of model form (i.e., multifidelity hierarchies) and solution discretization (i.e., multilevel hierarchies) in order of exploit trade offs between solution accuracy and cost. In particular, we seek the most cost effective fusion of information across complex multi-dimensional modeling hierarchies. Results to date indicate the utility of multiple approaches, including methods that optimally allocate resources when estimator variance varies smoothly across levels, methods that allocate sufficient sampling density based on sparsity estimates, and methods that employ greedy multilevel refinement.

More Details

Global sensitivity analysis and quantification of model error for large eddy simulation in scramjet design

19th AIAA Non-Deterministic Approaches Conference, 2017

Huan, Xun H.; Safta, Cosmin S.; Sargsyan, Khachik S.; Geraci, Gianluca G.; Eldred, Michael S.; Vane, Zachary P.; Lacaze, Guilhem M.; Oefelein, Joseph C.; Najm, H.N.

The development of scramjet engines is an important research area for advancing hypersonic and orbital flights. Progress towards optimal engine designs requires both accurate flow simulations as well as uncertainty quantification (UQ). However, performing UQ for scramjet simulations is challenging due to the large number of uncertain parameters involved and the high computational cost of flow simulations. We address these difficulties by combining UQ algorithms and numerical methods to the large eddy simulation of the HIFiRE scramjet configuration. First, global sensitivity analysis is conducted to identify influential uncertain input parameters, helping reduce the stochastic dimension of the problem and discover sparse representations. Second, as models of different fidelity are available and inevitably used in the overall UQ assessment, a framework for quantifying and propagating the uncertainty due to model error is introduced. These methods are demonstrated on a non-reacting scramjet unit problem with parameter space up to 24 dimensions, using 2D and 3D geometries with static and dynamic treatments of the turbulence subgrid model.

More Details
Results 76–94 of 94
Results 76–94 of 94