Publications

178 Results
Skip to search filters

Electron dynamics in extended systems within real-time time-dependent density-functional theory

MRS communications

Kononov, Alina K.; Lee, Cheng-Wei L.; Pereira dos Santos, Tatiane P.; Robinson, Brian R.; Yao, Yifan Y.; Yao, Yi Y.; Andrade, Xavier A.; Baczewski, Andrew D.; Constantinescu, Emil C.; Correa, Alfredo C.; Kanai, Yosuke K.; Modine, N.A.; Schleife, Andre S.

Due to a beneficial balance of computational cost and accuracy, real-time time-dependent density-functional theory has emerged as a promising first-principles framework to describe electron real-time dynamics. Here we discuss recent implementations around this approach, in particular in the context of complex, extended systems. Results include an analysis of the computational cost associated with numerical propagation and when using absorbing boundary conditions. We extensively explore the shortcomings for describing electron-electron scattering in real time and compare to many-body perturbation theory. Modern improvements of the description of exchange and correlation are reviewed. In this work, we specifically focus on the Qb@ll code, which we have mainly used for these types of simulations over the last years, and we conclude by pointing to further progress needed going forward.

More Details

First-principles simulation of light-ion microscopy of graphene

2D Materials

Kononov, Alina K.; Olmstead, Alexandra L.; Baczewski, Andrew D.; Schleife, Andre S.

The extreme sensitivity of 2D materials to defects and nanostructure requires precise imaging techniques to verify presence of desirable and absence of undesirable features in the atomic geometry. Helium-ion beams have emerged as a promising materials imaging tool, achieving up to 20 times higher resolution and 10 times larger depth-of-field than conventional or environmental scanning electron microscopes. Here, we offer first-principles theoretical insights to advance ion-beam imaging of atomically thin materials by performing real-time time-dependent density functional theory simulations of single impacts of 10–200 keV light ions in free-standing graphene. Here we predict that detecting electrons emitted from the back of the material (the side from which the ion exits) would result in up to three times higher signal and up to five times higher contrast images, making 2D materials especially compelling targets for ion-beam microscopy. This predicted superiority of exit-side emission likely arises from anisotropic kinetic emission. The charge induced in the graphene equilibrates on a sub-fs time scale, leading to only slight disturbances in the carbon lattice that are unlikely to damage the atomic structure for any of the beam parameters investigated here.

More Details

Improving Predictive Capability in REHEDS Simulations with Fast, Accurate, and Consistent Non-Equilibrium Material Properties

Hansen, Stephanie B.; Baczewski, Andrew D.; Gomez, T.A.; Hentschel, T.W.; Jennings, Christopher A.; Kononov, Alina K.; Nagayama, Taisuke N.; Adler, Kelsey A.; Cangi, A.C.; Cochrane, Kyle C.; Schleife, A. &.

Predictive design of REHEDS experiments with radiation-hydrodynamic simulations requires knowledge of material properties (e.g. equations of state (EOS), transport coefficients, and radiation physics). Interpreting experimental results requires accurate models of diagnostic observables (e.g. detailed emission, absorption, and scattering spectra). In conditions of Local Thermodynamic Equilibrium (LTE), these material properties and observables can be pre-computed with relatively high accuracy and subsequently tabulated on simple temperature-density grids for fast look-up by simulations. When radiation and electron temperatures fall out of equilibrium, however, non-LTE effects can profoundly change material properties and diagnostic signatures. Accurately and efficiently incorporating these non-LTE effects has been a longstanding challenge for simulations. At present, most simulations include non-LTE effects by invoking highly simplified inline models. These inline non-LTE models are both much slower than table look-up and significantly less accurate than the detailed models used to populate LTE tables and diagnose experimental data through post-processing or inversion. Because inline non-LTE models are slow, designers avoid them whenever possible, which leads to known inaccuracies from using tabular LTE. Because inline models are simple, they are inconsistent with tabular data from detailed models, leading to ill-known inaccuracies, and they cannot generate detailed synthetic diagnostics suitable for direct comparisons with experimental data. This project addresses the challenge of generating and utilizing efficient, accurate, and consistent non-equilibrium material data along three complementary but relatively independent research lines. First, we have developed a relatively fast and accurate non-LTE average-atom model based on density functional theory (DFT) that provides a complete set of EOS, transport, and radiative data, and have rigorously tested it against more sophisticated first-principles multi-atom DFT models, including time-dependent DFT. Next, we have developed a tabular scheme and interpolation methods that compactly capture non-LTE effects for use in simulations and have implemented these tables in the GORGON magneto-hydrodynamic (MHD) code. Finally, we have developed post-processing tools that use detailed tabulated non-LTE data to directly predict experimental observables from simulation output.

More Details

Hole in one: Pathways to deterministic single-acceptor incorporation in Si(100)-2 × 1

AVS Quantum Science

Campbell, Quinn C.; Baczewski, Andrew D.; Butera, R.E.; Misra, Shashank M.

Stochastic incorporation kinetics can be a limiting factor in the scalability of semiconductor fabrication technologies using atomic-precision techniques. While these technologies have recently been extended from donors to acceptors, the extent to which kinetics will impact single-acceptor incorporation has yet to be assessed. To identify the precursor molecule and dosing conditions that are promising for deterministic incorporation, we develop and apply an atomistic model for the single-acceptor incorporation rates of several recently demonstrated molecules: diborane (B2H6), boron trichloride (BCl3), and aluminum trichloride in both monomer (AlCl3) and dimer forms (Al2Cl6). While all three precursors can realize single-acceptor incorporation, we predict that diborane is unlikely to realize deterministic incorporation, boron trichloride can realize deterministic incorporation with modest heating (50 °C), and aluminum trichloride can realize deterministic incorporation at room temperature. We conclude that both boron and aluminum trichloride are promising precursors for atomic-precision single-acceptor applications, with the potential to enable the reliable production of large arrays of single-atom quantum devices.

More Details

Precision tomography of a three-qubit donor quantum processor in silicon

Nature

Mądzik, Mateusz T.; Asaad, Serwan; Youssry, Akram; Joecker, Benjamin; Rudinger, Kenneth M.; Nielsen, Erik N.; Young, Kevin C.; Proctor, Timothy J.; Baczewski, Andrew D.; Laucht, Arne; Schmitt, Vivien; Hudson, Fay E.; Itoh, Kohei M.; Jakob, Alexander M.; Johnson, Brett C.; Jamieson, David N.; Dzurak, Andrew S.; Ferrie, Christopher; Blume-Kohout, Robin J.; Morello, Andrea

Nuclear spins were among the first physical platforms to be considered for quantum information processing1,2, because of their exceptional quantum coherence3 and atomic-scale footprint. However, their full potential for quantum computing has not yet been realized, owing to the lack of methods with which to link nuclear qubits within a scalable device combined with multi-qubit operations with sufficient fidelity to sustain fault-tolerant quantum computation. Here we demonstrate universal quantum logic operations using a pair of ion-implanted 31P donor nuclei in a silicon nanoelectronic device. A nuclear two-qubit controlled-Z gate is obtained by imparting a geometric phase to a shared electron spin4, and used to prepare entangled Bell states with fidelities up to 94.2(2.7)%. The quantum operations are precisely characterized using gate set tomography (GST)5, yielding one-qubit average gate fidelities up to 99.95(2)%, two-qubit average gate fidelity of 99.37(11)% and two-qubit preparation/measurement fidelities of 98.95(4)%. These three metrics indicate that nuclear spins in silicon are approaching the performance demanded in fault-tolerant quantum processors6. We then demonstrate entanglement between the two nuclei and the shared electron by producing a Greenberger–Horne–Zeilinger three-qubit state with 92.5(1.0)% fidelity. Because electron spin qubits in semiconductors can be further coupled to other electrons7–9 or physically shuttled across different locations10,11, these results establish a viable route for scalable quantum information processing using donor nuclear and electron spins.

More Details

Al-alkyls as acceptor dopant precursors for atomic-scale devices

Journal of Physics Condensed Matter

Owen, J.H.G.; Campbell, Quinn C.; Santini, R.; Ivie, J.A.; Baczewski, Andrew D.; Schmucker, S.W.; Bussmann, Ezra B.; Misra, Shashank M.; Randall, J.N.

Atomically precise ultradoping of silicon is possible with atomic resists, area-selective surface chemistry, and a limited set of hydride and halide precursor molecules, in a process known as atomic precision advanced manufacturing (APAM). It is desirable to expand this set of precursors to include dopants with organic functional groups and here we consider aluminium alkyls, to expand the applicability of APAM. We explore the impurity content and selectivity that results from using trimethyl aluminium and triethyl aluminium precursors on Si(001) to ultradope with aluminium through a hydrogen mask. Comparison of the methylated and ethylated precursors helps us understand the impact of hydrocarbon ligand selection on incorporation surface chemistry. Combining scanning tunneling microscopy and density functional theory calculations, we assess the limitations of both classes of precursor and extract general principles relevant to each.

More Details

Controlled Formation of Stacked Si Quantum Dots in Vertical SiGe Nanowires

Nano Letters

Turner, Emily M.; Campbell, Quinn C.; Pizarro, Joaquín; Yang, Hongbin; Sapkota, Keshab R.; Lu, Ping L.; Baczewski, Andrew D.; Wang, George T.; Jones, Kevin S.

We demonstrate the ability to fabricate vertically stacked Si quantum dots (QDs) within SiGe nanowires with QD diameters down to 2 nm. These QDs are formed during high-temperature dry oxidation of Si/SiGe heterostructure pillars, during which Ge diffuses along the pillars' sidewalls and encapsulates the Si layers. Continued oxidation results in QDs with sizes dependent on oxidation time. The formation of a Ge-rich shell that encapsulates the Si QDs is observed, a configuration which is confirmed to be thermodynamically favorable with molecular dynamics and density functional theory. The type-II band alignment of the Si dot/SiGe pillar suggests that charge trapping on the Si QDs is possible, and electron energy loss spectra show that a conduction band offset of at least 200 meV is maintained for even the smallest Si QDs. Our approach is compatible with current Si-based manufacturing processes, offering a new avenue for realizing Si QD devices.

More Details

A New Route to Quantum-Scale Structures through a Novel Enhanced Germanium Diffusion Mechanism

Wang, George T.; Lu, Ping L.; Sapkota, Keshab R.; Baczewski, Andrew D.; Campbell, Quinn C.; Schultz, Peter A.; Jones, Kevin S.; Turner, Emily M.; Sharrock, Chappel J.; Law, Mark E.; Yang, Hongbin Y.

This project sought to develop a fundamental understanding of the mechanisms underlying a newly observed enhanced germanium (Ge) diffusion process in silicon germanium (SiGe) semiconductor nanostructures during thermal oxidation. Using a combination of oxidationdiffusion experiments, high resolution imaging, and theoretical modeling, a model for the enhanced Ge diffusion mechanism was proposed. Additionally, a nanofabrication approach utilizing this enhanced Ge diffusion mechanism was shown to be applicable to arbitrary 3D shapes, leading to the fabrication of stacked silicon quantum dots embedded in SiGe nanopillars. A new wet etch-based method for preparing 3D nanostructures for highresolution imaging free of obscuring material or damage was also developed. These results enable a new method for the controlled and scalable fabrication of on-chip silicon nanostructures with sub-10 nm dimensions needed for next generation microelectronics, including low energy electronics, quantum computing, sensors, and integrated photonics.

More Details

FAIR DEAL Grand Challenge Overview

Allemang, Christopher R.; Anderson, Evan M.; Baczewski, Andrew D.; Bussmann, Ezra B.; Butera, Robert E.; Campbell, DeAnna M.; Campbell, Quinn C.; Carr, Stephen M.; Frederick, Esther F.; Gamache, Phillip G.; Gao, Xujiao G.; Grine, Albert D.; Gunter, Mathew M.; Halsey, Connor H.; Ivie, Jeffrey A.; Katzenmeyer, Aaron M.; Leenheer, Andrew J.; Lepkowski, William L.; Lu, Tzu-Ming L.; Mamaluy, Denis M.; Mendez Granado, Juan P.; Pena, Luis F.; Schmucker, Scott W.; Scrymgeour, David S.; Tracy, Lisa A.; Wang, George T.; Ward, Dan W.; Young, Steve M.

While it is likely practically a bad idea to shrink a transistor to the size of an atom, there is no arguing that it would be fantastic to have atomic-scale control over every aspect of a transistor – a kind of crystal ball to understand and evaluate new ideas. This project showed that it was possible to take a niche technique used to place dopants in silicon with atomic precision and apply it broadly to study opportunities and limitations in microelectronics. In addition, it laid the foundation to attaining atomic-scale control in semiconductor manufacturing more broadly.

More Details

Atomic-precision advanced manufacturing for Si quantum computing

MRS Bulletin

Bussmann, Ezra B.; Butera, Robert E.; Owen, James H.G.; Randall, John N.; Rinaldi, Steven R.; Baczewski, Andrew D.; Misra, Shashank M.

A materials synthesis method that we call atomic-precision advanced manufacturing (APAM), which is the only known route to tailor silicon nanoelectronics with full 3D atomic precision, is making an impact as a powerful prototyping tool for quantum computing. Quantum computing schemes using atomic (31P) spin qubits are compelling for future scale-up owing to long dephasing times, one- and two-qubit gates nearing high-fidelity thresholds for fault-tolerant quantum error correction, and emerging routes to manufacturing via proven Si foundry techniques. Multiqubit devices are challenging to fabricate by conventional means owing to tight interqubit pitches forced by short-range spin interactions, and APAM offers the required (Å-scale) precision to systematically investigate solutions. However, applying APAM to fabricate circuitry with increasing numbers of qubits will require significant technique development. Here, we provide a tutorial on APAM techniques and materials and highlight its impacts in quantum computing research. Finally, we describe challenges on the path to multiqubit architectures and opportunities for APAM technique development. Graphic Abstract: [Figure not available: see fulltext.]

More Details

AlCl3-Dosed Si(100)-2 × 1: Adsorbates, Chlorinated Al Chains, and Incorporated Al

Journal of Physical Chemistry C

Radue, Matthew S.; Baek, Sungha; Farzaneh, Azadeh; Dwyer, K.J.; Campbell, Quinn C.; Baczewski, Andrew D.; Bussmann, Ezra B.; Wang, George T.; Mo, Yifei; Misra, Shashank M.; Butera, R.E.

The adsorption of AlCl3 on Si(100) and the effect of annealing the AlCl3-dosed substrate were studied to reveal key surface processes for the development of atomic-precision, acceptor-doping techniques. This investigation was performed via scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. At room temperature, AlCl3 readily adsorbed to the Si substrate dimers and dissociated to form a variety of species. Annealing the AlCl3-dosed substrate at temperatures below 450 °C produced unique chlorinated aluminum chains (CACs) elongated along the Si(100) dimer row direction. An atomic model for the chains is proposed with supporting DFT calculations. Al was incorporated into the Si substrate upon annealing at 450 °C and above, and Cl desorption was observed for temperatures beyond 450 °C. Al-incorporated samples were encapsulated in Si and characterized by secondary ion mass spectrometry (SIMS) depth profiling to quantify the Al atom concentration, which was found to be in excess of 1020 cm-3 across a ∼2.7 nm-thick δ-doped region. The Al concentration achieved here and the processing parameters utilized promote AlCl3 as a viable gaseous precursor for novel acceptor-doped Si materials and devices for quantum computing.

More Details

Evaluating Energy Differences on a Quantum Computer with Robust Phase Estimation

Physical Review Letters

Russo, A.E.; Rudinger, Kenneth M.; Morrison, B.C.A.; Baczewski, Andrew D.

We adapt the robust phase estimation algorithm to the evaluation of energy differences between two eigenstates using a quantum computer. This approach does not require controlled unitaries between auxiliary and system registers or even a single auxiliary qubit. As a proof of concept, we calculate the energies of the ground state and low-lying electronic excitations of a hydrogen molecule in a minimal basis on a cloud quantum computer. The denominative robustness of our approach is then quantified in terms of a high tolerance to coherent errors in the state preparation and measurement. Conceptually, we note that all quantum phase estimation algorithms ultimately evaluate eigenvalue differences.

More Details

Consistency testing for robust phase estimation

Physical Review A

Russo, Antonio R.; Kirby, William M.; Rudinger, Kenneth M.; Baczewski, Andrew D.; Kimmel, Shelby

We present an extension to the robust phase estimation protocol, which can identify incorrect results that would otherwise lie outside the expected statistical range. Robust phase estimation is increasingly a method of choice for applications such as estimating the effective process parameters of noisy hardware, but its robustness is dependent on the noise satisfying certain threshold assumptions. We provide consistency checks that can indicate when those thresholds have been violated, which can be difficult or impossible to test directly. We test these consistency checks for several common noise models, and identify two possible checks with high accuracy in locating the point in a robust phase estimation run at which further estimates should not be trusted. One of these checks may be chosen based on resource availability, or they can be used together in order to provide additional verification.

More Details

First-principles modeling of plasmons in aluminum under ambient and extreme conditions

Physical Review B

Ramakrishna, Kushal; Cangi, Attila; Dornheim, Tobias; Baczewski, Andrew D.; Vorberger, Jan

The theoretical understanding of plasmon behavior is crucial for an accurate interpretation of inelastic scattering diagnostics in many experiments. We highlight the utility of linear response time-dependent density functional theory (LR-TDDFT) as a first-principles framework for consistently modeling plasmon properties. We provide a comprehensive analysis of plasmons in aluminum from ambient to warm dense matter conditions and assess typical properties such as the dynamical structure factor, the plasmon dispersion, and the plasmon lifetime. We compare our results with scattering measurements and with other TDDFT results as well as models such as the random phase approximation, the Mermin approach, and the dielectric function obtained using static local field corrections of the uniform electron gas parametrized from path-integral Monte Carlo simulations. We conclude that results for the plasmon dispersion and lifetime are inconsistent between experiment and theories and that the common practice of extracting and studying plasmon dispersion relations is an insufficient procedure to capture the complicated physics contained in the dynamic structure factor in its full breadth.

More Details

A Model for Atomic Precision p-Type Doping with Diborane on Si(100)-2×1

Journal of Physical Chemistry C

Campbell, Quinn C.; Ivie, Jeffrey A.; Bussmann, Ezra B.; Schmucker, Scott W.; Baczewski, Andrew D.; Misra, Shashank M.

Diborane (B2H6) is a promising molecular precursor for atomic precision p-type doping of silicon that has recently been experimentally demonstrated [ Škereň et al. Nat. Electron. 2020 ]. We use density functional theory (DFT) calculations to determine the reaction pathway for diborane dissociating into a species that will incorporate as electrically active substitutional boron after adsorbing onto the Si(100)-2×1 surface. Our calculations indicate that diborane must overcome an energy barrier to adsorb, explaining the experimentally observed low sticking coefficient (<1 × 10-4 at room temperature) and suggesting that heating can be used to increase the adsorption rate. Upon sticking, diborane has an ≈50% chance of splitting into two BH3 fragments versus merely losing hydrogen to form a dimer such as B2H4. As boron dimers are likely electrically inactive, whether this latter reaction occurs is shown to be predictive of the incorporation rate. The dissociation process proceeds with significant energy barriers, necessitating the use of high temperatures for incorporation. Using the barriers calculated from DFT, we parameterize a Kinetic Monte Carlo model that predicts the incorporation statistics of boron as a function of the initial depassivation geometry, dose, and anneal temperature. Our results suggest that the dimer nature of diborane inherently limits its doping density as an acceptor precursor and furthermore that heating the boron dimers to split before exposure to silicon can lead to poor selectivity on hydrogen and halogen resists. This suggests that, while diborane works as an atomic precision acceptor precursor, other non-dimerized acceptor precursors may lead to higher incorporation rates at lower temperatures.

More Details

Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques

Journal of Micro/Nanopatterning, Materials and Metrology

Katzenmeyer, Aaron M.; Dmitrovic, Sanja; Baczewski, Andrew D.; Campbell, Quinn C.; Bussmann, Ezra B.; Lu, Tzu-Ming L.; Anderson, Evan M.; Schmucker, Scott W.; Ivie, Jeffrey A.; Campbell, DeAnna M.; Ward, Daniel R.; Scrymgeour, David S.; Wang, George T.; Misra, Shashank M.

The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with subnanometer precision, typically for quantum physics experiments. This process, which we call atomic precision advanced manufacturing (APAM), dopes silicon beyond the solid-solubility limit and produces electrical and optical characteristics that may also be useful for microelectronic and plasmonic applications. However, scanned probe lithography lacks the throughput required to develop more sophisticated applications. Here, we demonstrate and characterize an APAM device workflow where scanned probe lithography of the atomic layer resist has been replaced by photolithography. An ultraviolet laser is shown to locally and controllably heat silicon above the temperature required for hydrogen depassivation on a nanosecond timescale, a process resistant to under- and overexposure. STM images indicate a narrow range of energy density where the surface is both depassivated and undamaged. Modeling that accounts for photothermal heating and the subsequent hydrogen desorption kinetics suggests that the silicon surface temperatures reached in our patterning process exceed those required for hydrogen removal in temperature-programmed desorption experiments. A phosphorus-doped van der Pauw structure made by sequentially photodepassivating a predefined area and then exposing it to phosphine is found to have a similar mobility and higher carrier density compared with devices patterned by STM. Lastly, it is also demonstrated that photodepassivation and precursor exposure steps may be performed concomitantly, a potential route to enabling APAM outside of ultrahigh vacuum.

More Details

Low thermal budget high-k/metal surface gate for buried donor-based devices

JPhys Materials

Anderson, Evan M.; Campbell, De A.; Maurer, Leon N.; Baczewski, Andrew D.; Marshall, Michael T.; Lu, Tzu-Ming L.; Lu, Ping L.; Tracy, Lisa A.; Schmucker, Scott W.; Ward, Daniel R.; Misra, Shashank M.

Atomic precision advanced manufacturing (APAM) offers creation of donor devices in an atomically thin layer doped beyond the solid solubility limit, enabling unique device physics. This presents an opportunity to use APAM as a pathfinding platform to investigate digital electronics at the atomic limit. Scaling to smaller transistors is increasingly difficult and expensive, necessitating the investigation of alternative fabrication paths that extend to the atomic scale. APAM donor devices can be created using a scanning tunneling microscope (STM). However, these devices are not currently compatible with industry standard fabrication processes. There exists a tradeoff between low thermal budget (LT) processes to limit dopant diffusion and high thermal budget (HT) processes to grow defect-free layers of epitaxial Si and gate oxide. To this end, we have developed an LT epitaxial Si cap and LT deposited Al2O3 gate oxide integrated with an atomically precise single-electron transistor (SET) that we use as an electrometer to characterize the quality of the gate stack. The surface-gated SET exhibits the expected Coulomb blockade behavior. However, the gate’s leverage over the SET is limited by defects in the layers above the SET, including interfaces between the Si and oxide, and structural and chemical defects in the Si cap. We propose a more sophisticated gate stack and process flow that is predicted to improve performance in future atomic precision devices.

More Details

Coherent electrical control of a single high-spin nucleus in silicon

Nature

Asaad, Serwan; Mourik, Vincent; Joecker, Benjamin; Johnson, Mark A.I.; Baczewski, Andrew D.; Firgau, Hannes R.; Mądzik, Mateusz T.; Schmitt, Vivien; Pla, Jarryd J.; Hudson, Fay E.; Itoh, Kohei M.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Laucht, Arne; Morello, Andrea

Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers1 and demonstrations of quantum search2 and factoring3 algorithms. Scaling up such concepts requires controlling individual nuclei, which can be detected when coupled to an electron4–6. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods7–9 relied on transducing electric signals into magnetic fields via the electron–nuclear hyperfine interaction, which severely affects nuclear coherence. Here we demonstrate the coherent quantum control of a single 123Sb (spin-7/2) nucleus using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea proposed in 196110 but not previously realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction results in coherent nuclear spin transitions that are uniquely addressable owing to lattice strain. The spin dephasing time, 0.1 seconds, is orders of magnitude longer than those obtained by methods that require a coupled electron spin to achieve electrical driving. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots11,12 could pave the way to scalable, nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields.

More Details

Photothermal alternative to device fabrication using atomic precision advanced manufacturing techniques

Proceedings of SPIE - The International Society for Optical Engineering

Katzenmeyer, Aaron M.; Dmitrovic, S.; Baczewski, Andrew D.; Bussmann, Ezra B.; Lu, Tzu-Ming L.; Anderson, Evan M.; Schmucker, S.W.; Ivie, J.A.; Campbell, DeAnna M.; Ward, D.R.; Wang, George T.; Misra, Shashank M.

The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with sub-nanometer precision, typically for quantum physics demonstrations, and to dope silicon past the solid-solubility limit, with potential applications in microelectronics and plasmonics. However, this process, which we call atomic precision advanced manufacturing (APAM), currently lacks the throughput required to develop sophisticated applications because there is no proven scalable hydrogen lithography pathway. Here, we demonstrate and characterize an APAM device workflow where STM lithography has been replaced with photolithography. An ultraviolet laser is shown to locally heat silicon controllably above the temperature required for hydrogen depassivation. STM images indicate a narrow range of laser energy density where hydrogen has been depassivated, and the surface remains well-ordered. A model for photothermal heating of silicon predicts a local temperature which is consistent with atomic-scale STM images of the photo-patterned regions. Finally, a simple device made by exposing photo-depassivated silicon to phosphine is found to have a carrier density and mobility similar to that produced by similar devices patterned by STM.

More Details

Designer quantum materials

Misra, Shashank M.; Ward, Daniel R.; Baczewski, Andrew D.; Campbell, Quinn C.; Schmucker, Scott W.; Mounce, Andrew M.; Tracy, Lisa A.; Lu, Tzu-Ming L.; Marshall, Michael T.; Campbell, DeAnna M.

Quantum materials have long promised to revolutionize everything from energy transmission (high temperature superconductors) to both quantum and classical information systems (topological materials). However, their discovery and application has proceeded in an Edisonian fashion due to both an incomplete theoretical understanding and the difficulty of growing and purifying new materials. This project leverages Sandia's unique atomic precision advanced manufacturing (APAM) capability to design small-scale tunable arrays (designer materials) made of donors in silicon. Their low-energy electronic behavior can mimic quantum materials, and can be tuned by changing the fabrication parameters for the array, thereby enabling the discovery of materials systems which can't yet be synthesized. In this report, we detail three key advances we have made towards development of designer quantum materials. First are advances both in APAM technique and underlying mechanisms required to realize high-yielding donor arrays. Second is the first-ever observation of distinct phases in this material system, manifest in disordered 2D sheets of donors. Finally are advances in modeling the electronic structure of donor clusters and regular structures incorporating them, critical to understanding whether an array is expected to show interesting physics. Combined, these establish the baseline knowledge required to manifest the strongly-correlated phases of the Mott-Hubbard model in donor arrays, the first step to deploying APAM donor arrays as analogues of quantum materials.

More Details

Gate-defined quantum dots in Ge/SiGe quantum wells as a platform for spin qubits

ECS Transactions

Hardy, Will H.; Su, Y.H.; Chuang, Y.; Maurer, L.N.; Brickson, M.; Baczewski, Andrew D.; Li, J.Y.; Lu, Tzu-Ming L.; Luhman, Dwight R.

In the field of semiconductor quantum dot spin qubits, there is growing interest in leveraging the unique properties of hole-carrier systems and their intrinsically strong spin-orbit coupling to engineer novel qubits. Recent advances in semiconductor heterostructure growth have made available high quality, undoped Ge/SiGe quantum wells, consisting of a pure strained Ge layer flanked by Ge-rich SiGe layers above and below. These quantum wells feature heavy hole carriers and a cubic Rashba-type spin-orbit interaction. Here, we describe progress toward realizing spin qubits in this platform, including development of multi-metal-layer gated device architectures, device tuning protocols, and charge-sensing capabilities. Iterative improvement of a three-layer metal gate architecture has significantly enhanced device performance over that achieved using an earlier single-layer gate design. We discuss ongoing, simulation-informed work to fine-tune the device geometry, as well as efforts toward a single-spin qubit demonstration.

More Details

Weak anti-localization of two-dimensional holes in germanium beyond the diffusive regime

Nanoscale

Chou, C.T.; Jacobson, Noah T.; Moussa, J.E.; Baczewski, Andrew D.; Chuang, Y.; Liu, C.Y.; Li, J.Y.; Lu, Tzu-Ming L.

Gate-controllable spin-orbit coupling is often one requisite for spintronic devices. For practical spin field-effect transistors, another essential requirement is ballistic spin transport, where the spin precession length is shorter than the mean free path such that the gate-controlled spin precession is not randomized by disorder. In this letter, we report the observation of a gate-induced crossover from weak localization to weak anti-localization in the magneto-resistance of a high-mobility two-dimensional hole gas in a strained germanium quantum well. From the magneto-resistance, we extract the phase-coherence time, spin-orbit precession time, spin-orbit energy splitting, and cubic Rashba coefficient over a wide density range. The mobility and the mean free path increase with increasing hole density, while the spin precession length decreases due to increasingly stronger spin-orbit coupling. As the density becomes larger than ∼6 × 1011 cm-2, the spin precession length becomes shorter than the mean free path, and the system enters the ballistic spin transport regime. We also report here the numerical methods and code developed for calculating the magneto-resistance in the ballistic regime, where the commonly used HLN and ILP models for analyzing weak localization and anti-localization are not valid. These results pave the way toward silicon-compatible spintronic devices.

More Details

All-electrical universal control of a double quantum dot qubit in silicon MOS

Technical Digest - International Electron Devices Meeting, IEDM

Harvey-Collard, Patrick; Jock, Ryan M.; Jacobson, Noah T.; Baczewski, Andrew D.; Mounce, Andrew M.; Curry, Matthew J.; Ward, Daniel R.; Anderson, John M.; Manginell, Ronald P.; Wendt, J.R.; Rudolph, Martin R.; Pluym, Tammy P.; Lilly, Michael L.; Pioro-Ladrière, Michel; Carroll, Malcolm

Qubits based on transistor-like Si MOS nanodevices are promising for quantum computing. In this work, we demonstrate a double quantum dot spin qubit that is all-electrically controlled without the need for any external components, like micromagnets, that could complicate integration. Universal control of the qubit is achieved through spin-orbit-like and exchange interactions. Using single shot readout, we show both DC- and AC-control techniques. The fabrication technology used is completely compatible with CMOS.

More Details

Valley splitting of single-electron Si MOS quantum dots

Applied Physics Letters

Gamble, John K.; Harvey-Collard, Patrick; Jacobson, Noah T.; Baczewski, Andrew D.; Nielsen, Erik N.; Maurer, Leon; Montano, Ines M.; Rudolph, Martin R.; Carroll, Malcolm; Yang, C.H.; Rossi, A.; Dzurak, A.S.; Muller, Richard P.

Silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physics between the two samples is essentially the same.

More Details

Stopping of Deuterium in Warm Dense Deuterium from Ehrenfest Time-Dependent Density Functional Theory

Contributions to Plasma Physics

Magyar, Rudolph J.; Shulenburger, Luke N.; Baczewski, Andrew D.

In these proceedings, we show that time-dependent density functional theory is capable of stopping calculations at the extreme conditions of temperature and pressure seen in warm dense matter. The accuracy of the stopping curves tends to be up to about 20% lower than empirical models that are in use. However, TDDFT calculations are free from fitting parameters and assumptions about the model form of the dielectric function. This work allows the simulation of ion stopping in many materials that are difficult to study experimentally. (© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

More Details

X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition

Physical Review Letters

Baczewski, Andrew D.; Shulenburger, L.; Desjarlais, M.P.; Hansen, S.B.; Magyar, R.J.

X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.

More Details

Numerical implementation of time-dependent density functional theory for extended systems in extreme environments

Baczewski, Andrew D.; Shulenburger, Luke N.; Desjarlais, Michael P.; Magyar, Rudolph J.

In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.

More Details

Computational Mechanics for Heterogeneous Materials

Baczewski, Andrew D.; Yarrington, Cole Y.; Bond, Stephen D.; Erikson, William W.; Lehoucq, Richard B.; Mondy, L.A.; Noble, David R.; Pierce, Flint P.; Roberts, Christine C.; Van Swol, Frank

The subject of this work is the development of models for the numerical simulation of matter, momentum, and energy balance in heterogeneous materials. These are materials that consist of multiple phases or species or that are structured on some (perhaps many) scale(s). By computational mechanics we mean to refer generally to the standard type of modeling that is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to the flow or flux of these quantities in a generalized sense as transport. At issue here are the forms of the governing equations in these complex materials which are potentially strongly inhomogeneous below some correlation length scale and are yet homogeneous on larger length scales. The question then becomes one of how to model this behavior and what are the proper multi-scale equations to capture the transport mechanisms across scales. To address this we look to the area of generalized stochastic process that underlie the transport processes in homogeneous materials. The archetypal example being the relationship between a random walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion equation. Here we are interested in how this classical setting changes when inhomogeneities or correlations in structure are introduced into the problem. Aspects of non-classical behavior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement (MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We present an experimental technique and apparatus built to investigate some of these issues. We also discuss diffusive processes in inhomogeneous systems, and the role of the chemical potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal solutions is considered. Finally we present an example of how inhomogeneities in material microstructure introduce fluctuations at the meso-scale for a thermal conduction problem. These fluctuations due to random microstructures also provide a means of characterizing the aleatory uncertainty in material properties at the mesoscale.

More Details

Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel

Journal of Chemical Physics

Baczewski, Andrew D.; Bond, Stephen D.

Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrators that are efficient, stable, and have known convergence properties. In this article, we derive a family of extended variable integrators for the Generalized Langevin equation with a positive Prony series memory kernel. Using stability and error analysis, we identify a superlative choice of parameters and implement the corresponding numerical algorithm in the LAMMPS MD software package. Salient features of the algorithm include exact conservation of the first and second moments of the equilibrium velocity distribution in some important cases, stable behavior in the limit of conventional Langevin dynamics, and the use of a convolution-free formalism that obviates the need for explicit storage of the time history of particle velocities. Capability is demonstrated with respect to accuracy in numerous canonical examples, stability in certain limits, and an exemplary application in which the effect of a harmonic confining potential is mapped onto a memory kernel.

More Details

Accelerated Cartesian expansions for the rapid solution of periodic multiscale problems

IEEE Transactions on Antennas and Propagation

Baczewski, Andrew D.; Dault, Daniel D.; Shanker, Balasubramaniam S.

We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within the context of periodic systems are provided, as well as results that establish error convergence and scalability. In addition, we also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems.

More Details

Rapid analysis of scattering from periodic dielectric structures using accelerated Cartesian expansions

Journal of the Optical Society of America. A, Optics, Image Science, and Vision

Baczewski, Andrew D.; Miller, Nicholas C.; Shanker, Balasubramaniam S.

Here, the analysis of fields in periodic dielectric structures arise in numerous applications of recent interest, ranging from photonic bandgap structures and plasmonically active nanostructures to metamaterials. To achieve an accurate representation of the fields in these structures using numerical methods, dense spatial discretization is required. This, in turn, affects the cost of analysis, particularly for integral-equation-based methods, for which traditional iterative methods require Ο(Ν2) operations, Ν being the number of spatial degrees of freedom. In this paper, we introduce a method for the rapid solution of volumetric electric field integral equations used in the analysis of doubly periodic dielectric structures. The crux of our method is the accelerated Cartesian expansion algorithm, which is used to evaluate the requisite potentials in Ο(Ν) cost. Results are provided that corroborate our claims of acceleration without compromising accuracy, as well as the application of our method to a number of compelling photonics applications.

More Details

Accelerated Cartesian expansion (ACE) based framework for the rapid evaluation of diffusion, lossy wave, and Klein-Gordon potentials

Journal of Computational Physics

Baczewski, Andrew D.; Vikram, Melapudi V.; Shanker, Balasubramaniam S.; Kempel, Leo K.

Diffusion, lossy wave, and Klein–Gordon equations find numerous applications in practical problems across a range of diverse disciplines. The temporal dependence of all three Green’s functions are characterized by an infinite tail. This implies that the cost complexity of the spatio-temporal convolutions, associated with evaluating the potentials, scales as O(Ns2Nt2), where Ns and Nt are the number of spatial and temporal degrees of freedom, respectively. In this paper, we discuss two new methods to rapidly evaluate these spatio-temporal convolutions by exploiting their block-Toeplitz nature within the framework of accelerated Cartesian expansions (ACE). The first scheme identifies a convolution relation in time amongst ACE harmonics and the fast Fourier transform (FFT) is used for efficient evaluation of these convolutions. The second method exploits the rank deficiency of the ACE translation operators with respect to time and develops a recursive numerical compression scheme for the efficient representation and evaluation of temporal convolutions. It is shown that the cost of both methods scales as O(NsNtlog2Nt). Furthermore, several numerical results are presented for the diffusion equation to validate the accuracy and efficacy of the fast algorithms developed here.

More Details

Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

Nanotechnology

Jacobs, Benjamin W.; Ayres, Virginia A.; Stallcup, Richard S.; Hartman, Alan H.; Tupta, Mary A.; Baczewski, Andrew D.; Crimp, Martin C.; Halpern, Joshua H.; He, Maoqi H.; Shaw, Harry S.

Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

More Details
178 Results
178 Results