Publications

Results 1–25 of 100
Skip to search filters

A block coordinate descent optimizer for classification problems exploiting convexity

CEUR Workshop Proceedings

Patel, Ravi G.; Trask, Nathaniel A.; Gulian, Mamikon G.; Cyr, Eric C.

Second-order optimizers hold intriguing potential for deep learning, but suffer from increased cost and sensitivity to the non-convexity of the loss surface as compared to gradient-based approaches. We introduce a coordinate descent method to train deep neural networks for classification tasks that exploits global convexity of the cross-entropy loss in the weights of the linear layer. Our hybrid Newton/Gradient Descent (NGD) method is consistent with the interpretation of hidden layers as providing an adaptive basis and the linear layer as providing an optimal fit of the basis to data. By alternating between a second-order method to find globally optimal parameters for the linear layer and gradient descent to train the hidden layers, we ensure an optimal fit of the adaptive basis to data throughout training. The size of the Hessian in the second-order step scales only with the number weights in the linear layer and not the depth and width of the hidden layers; furthermore, the approach is applicable to arbitrary hidden layer architecture. Previous work applying this adaptive basis perspective to regression problems demonstrated significant improvements in accuracy at reduced training cost, and this work can be viewed as an extension of this approach to classification problems. We first prove that the resulting Hessian matrix is symmetric semi-definite, and that the Newton step realizes a global minimizer. By studying classification of manufactured two-dimensional point cloud data, we demonstrate both an improvement in validation error and a striking qualitative difference in the basis functions encoded in the hidden layer when trained using NGD. Application to image classification benchmarks for both dense and convolutional architectures reveals improved training accuracy, suggesting gains of second-order methods over gradient descent. A Tensorflow implementation of the algorithm is available at github.com/rgp62/.

More Details

A conservative, consistent, and scalable meshfree mimetic method

Journal of Computational Physics

Trask, Nathaniel A.; Bochev, Pavel B.; Perego, Mauro P.

Mimetic methods discretize divergence by restricting the Gauss theorem to mesh cells. Because point clouds lack such geometric entities, construction of a compatible meshfree divergence remains a challenge. In this work, we define an abstract Meshfree Mimetic Divergence (MMD) operator on point clouds by contraction of field and virtual face moments. This MMD satisfies a discrete divergence theorem, provides a discrete local conservation principle, and is first-order accurate. We consider two MMD instantiations. The first one assumes a background mesh and uses generalized moving least squares (GMLS) to obtain the necessary field and face moments. This MMD instance is appropriate for settings where a mesh is available but its quality is insufficient for a robust and accurate mesh-based discretization. The second MMD operator retains the GMLS field moments but defines virtual face moments using computationally efficient weighted graph-Laplacian equations. This MMD instance does not require a background grid and is appropriate for applications where mesh generation creates a computational bottleneck. It allows one to trade an expensive mesh generation problem for a scalable algebraic one, without sacrificing compatibility with the divergence operator. We demonstrate the approach by using the MMD operator to obtain a virtual finite-volume discretization of conservation laws on point clouds. Numerical results in the paper confirm the mimetic properties of the method and show that it behaves similarly to standard finite volume methods.

More Details

A physics-informed operator regression framework for extracting data-driven continuum models

Computer Methods in Applied Mechanics and Engineering

Patel, Ravi G.; Trask, Nathaniel A.; Wood, Mitchell A.; Cyr, Eric C.

The application of deep learning toward discovery of data-driven models requires careful application of inductive biases to obtain a description of physics which is both accurate and robust. We present here a framework for discovering continuum models from high fidelity molecular simulation data. Our approach applies a neural network parameterization of governing physics in modal space, allowing a characterization of differential operators while providing structure which may be used to impose biases related to symmetry, isotropy, and conservation form. Here, we demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows. For the flow physics we demonstrate this approach leads to a learned operator that generalizes to system characteristics not included in the training sets, such as variable particle sizes, densities, and concentration.

More Details

A spatially adaptive high-order meshless method for fluid–structure interactions

Computer Methods in Applied Mechanics and Engineering

Hu, Wei; Trask, Nathaniel A.; Hu, Xiaozhe; Pan, Wenxiao

We present a scheme implementing an a posteriori refinement strategy in the context of a high-order meshless method for problems involving point singularities and fluid–solid interfaces. The generalized moving least squares (GMLS) discretization used in this work has been previously demonstrated to provide high-order compatible discretization of the Stokes and Darcy problems, offering a high-fidelity simulation tool for problems with moving boundaries. The meshless nature of the discretization is particularly attractive for adaptive h-refinement, especially when resolving the near-field aspects of variables and point singularities governing lubrication effects in fluid–structure interactions. We demonstrate that the resulting spatially adaptive GMLS method is able to achieve optimal convergence in the presence of singularities for both the div-grad and Stokes problems. Further, we present a series of simulations for flows of colloid suspensions, in which the refinement strategy efficiently achieved highly accurate solutions, particularly for colloids with complex geometries.

More Details

Accurate Compression of Tabulated Chemistry Models with Partition of Unity Networks

Combustion Science and Technology

Armstrong, Elizabeth A.; Hansen, Michael A.; Knaus, Robert C.; Trask, Nathaniel A.; Hewson, John C.; Sutherland, James C.

Tabulated chemistry models are widely used to simulate large-scale turbulent fires in applications including energy generation and fire safety. Tabulation via piecewise Cartesian interpolation suffers from the curse-of-dimensionality, leading to a prohibitive exponential growth in parameters and memory usage as more dimensions are considered. Artificial neural networks (ANNs) have attracted attention for constructing surrogates for chemistry models due to their ability to perform high-dimensional approximation. However, due to well-known pathologies regarding the realization of suboptimal local minima during training, in practice they do not converge and provide unreliable accuracy. Partition of unity networks (POUnets) are a recently introduced family of ANNs which preserve notions of convergence while performing high-dimensional approximation, discovering a mesh-free partition of space which may be used to perform optimal polynomial approximation. In this work, we assess their performance with respect to accuracy and model complexity in reconstructing unstructured flamelet data representative of nonadiabatic pool fire models. Our results show that POUnets can provide the desirable accuracy of classical spline-based interpolants with the low memory footprint of traditional ANNs while converging faster to significantly lower errors than ANNs. For example, we observe POUnets obtaining target accuracies in two dimensions with 40 to 50 times less memory and roughly double the compression in three dimensions. We also address the practical matter of efficiently training accurate POUnets by studying convergence over key hyperparameters, the impact of partition/basis formulation, and the sensitivity to initialization.

More Details

An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems

ESAIM: Mathematical Modelling and Numerical Analysis

You, Huaiqian; Lu, Xin Y.; Trask, Nathaniel A.; Yu, Yue; Yu, Yue

In this paper we consider 2D nonlocal diffusion models with a finite nonlocal horizon parameter δ characterizing the range of nonlocal interactions, and consider the treatment of Neumann-like boundary conditions that have proven challenging for discretizations of nonlocal models. We propose a new generalization of classical local Neumann conditions by converting the local flux to a correction term in the nonlocal model, which provides an estimate for the nonlocal interactions of each point with points outside the domain. While existing 2D nonlocal flux boundary conditions have been shown to exhibit at most first order convergence to the local counter part as δ → 0, the proposed Neumann-type boundary formulation recovers the local case as O(δ2) in the L∞ (ω) norm, which is optimal considering the O(δ2) convergence of the nonlocal equation to its local limit away from the boundary. We analyze the application of this new boundary treatment to the nonlocal diffusion problem, and present conditions under which the solution of the nonlocal boundary value problem converges to the solution of the corresponding local Neumann problem as the horizon is reduced. To demonstrate the applicability of this nonlocal flux boundary condition to more complicated scenarios, we extend the approach to less regular domains, numerically verifying that we preserve second-order convergence for non-convex domains with corners. Based on the new formulation for nonlocal boundary condition, we develop an asymptotically compatible meshfree discretization, obtaining a solution to the nonlocal diffusion equation with mixed boundary conditions that converges with O(δ2) convergence.

More Details

An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics

Computer Methods in Applied Mechanics and Engineering

Trask, Nathaniel A.; You, Huaiqian; Yu, Yue; Parks, Michael L.

We present a meshfree quadrature rule for compactly supported nonlocal integro-differential equations (IDEs) with radial kernels. We apply this rule to develop a meshfree discretization of a peridynamic solid mechanics model that requires no background mesh. Existing discretizations of peridynamic models have been shown to exhibit a lack of asymptotic compatibility to the corresponding linearly elastic local solution. By posing the quadrature rule as an equality constrained least squares problem, we obtain asymptotically compatible convergence by introducing polynomial reproduction constraints. Our approach naturally handles traction-free conditions, surface effects, and damage modeling for both static and dynamic problems. We demonstrate high-order convergence to the local theory by comparing to manufactured solutions and to cases with crack singularities for which an analytic solution is available. Finally, we verify the applicability of the approach to realistic problems by reproducing high-velocity impact results from the Kalthoff–Winkler experiments.

More Details

An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture

Computer Methods in Applied Mechanics and Engineering

Yu, Yue; You, Huaiqian; Trask, Nathaniel A.

Meshfree discretizations of state-based peridynamic models are attractive due to their ability to naturally describe fracture of general materials. However, two factors conspire to prevent meshfree discretizations of state-based peridynamics from converging to corresponding local solutions as resolution is increased: quadrature error prevents an accurate prediction of bulk mechanics, and the lack of an explicit boundary representation presents challenges when applying traction loads. In this paper, we develop a reformulation of the linear peridynamic solid (LPS) model to address these shortcomings, using improved meshfree quadrature, a reformulation of the nonlocal dilatation, and a consistent handling of the nonlocal traction condition to construct a model with rigorous accuracy guarantees. In particular, these improvements are designed to enforce discrete consistency in the presence of evolving fractures, whose a priori unknown location render consistent treatment difficult. In the absence of fracture, when a corresponding classical continuum mechanics model exists, our improvements provide asymptotically compatible convergence to corresponding local solutions, eliminating surface effects and issues with traction loading which have historically plagued peridynamic discretizations. When fracture occurs, our formulation automatically provides a sharp representation of the fracture surface by breaking bonds, avoiding the loss of mass. We provide rigorous error analysis and demonstrate convergence for a number of benchmarks, including manufactured solutions, free-surface, nonhomogeneous traction loading, and composite material problems. Finally, we validate simulations of brittle fracture against a recent experiment of dynamic crack branching in soda-lime glass, providing evidence that the scheme yields accurate predictions for practical engineering problems.

More Details

ASCEND: Asymptotically compatible strong form foundations for nonlocal discretization

Trask, Nathaniel A.; D'Elia, Marta D.; Littlewood, David J.; Silling, Stewart A.; Trageser, Jeremy T.; Tupek, Michael R.

Nonlocal models naturally handle a range of physics of interest to SNL, but discretization of their underlying integral operators poses mathematical challenges to realize the accuracy and robustness commonplace in discretization of local counterparts. This project focuses on the concept of asymptotic compatibility, namely preservation of the limit of the discrete nonlocal model to a corresponding well-understood local solution. We address challenges that have traditionally troubled nonlocal mechanics models primarily related to consistency guarantees and boundary conditions. For simple problems such as diffusion and linear elasticity we have developed complete error analysis theory providing consistency guarantees. We then take these foundational tools to develop new state-of-the-art capabilities for: lithiation-induced failure in batteries, ductile failure of problems driven by contact, blast-on-structure induced failure, brittle/ductile failure of thin structures. We also summarize ongoing efforts using these frameworks in data-driven modeling contexts. This report provides a high-level summary of all publications which followed from these efforts.

More Details
Results 1–25 of 100
Results 1–25 of 100