Publications

Results 1–25 of 63
Skip to search filters

A physics-informed operator regression framework for extracting data-driven continuum models

Computer Methods in Applied Mechanics and Engineering

Patel, Ravi G.; Trask, Nathaniel A.; Wood, Mitchell A.; Cyr, Eric C.

The application of deep learning toward discovery of data-driven models requires careful application of inductive biases to obtain a description of physics which is both accurate and robust. We present here a framework for discovering continuum models from high fidelity molecular simulation data. Our approach applies a neural network parameterization of governing physics in modal space, allowing a characterization of differential operators while providing structure which may be used to impose biases related to symmetry, isotropy, and conservation form. Here, we demonstrate the effectiveness of our framework for a variety of physics, including local and nonlocal diffusion processes and single and multiphase flows. For the flow physics we demonstrate this approach leads to a learned operator that generalizes to system characteristics not included in the training sets, such as variable particle sizes, densities, and concentration.

More Details

Data-driven magneto-elastic predictions with scalable classical spin-lattice dynamics

npj Computational Materials

Nikolov, Svetoslav V.; Wood, Mitchell A.; Cangi, Attila; Maillet, Jean B.; Marinica, Mihai C.; Thompson, Aidan P.; Desjarlais, Michael P.; Tranchida, Julien G.

A data-driven framework is presented for building magneto-elastic machine-learning interatomic potentials (ML-IAPs) for large-scale spin-lattice dynamics simulations. The magneto-elastic ML-IAPs are constructed by coupling a collective atomic spin model with an ML-IAP. Together they represent a potential energy surface from which the mechanical forces on the atoms and the precession dynamics of the atomic spins are computed. Both the atomic spin model and the ML-IAP are parametrized on data from first-principles calculations. We demonstrate the efficacy of our data-driven framework across magneto-structural phase transitions by generating a magneto-elastic ML-IAP for α-iron. The combined potential energy surface yields excellent agreement with first-principles magneto-elastic calculations and quantitative predictions of diverse materials properties including bulk modulus, magnetization, and specific heat across the ferromagnetic–paramagnetic phase transition.

More Details

Efficacy of the radial pair potential approximation for molecular dynamics simulations of dense plasmas

Physics of Plasmas

Stanek, Lucas J.; Clay III, Raymond C.; Dharma-Wardana, M.W.C.; Wood, Mitchell A.; Beckwith, Kristian B.; Murillo, Michael S.

Macroscopic simulations of dense plasmas rely on detailed microscopic information that can be computationally expensive and is difficult to verify experimentally. In this work, we delineate the accuracy boundary between microscale simulation methods by comparing Kohn-Sham density functional theory molecular dynamics (KS-MD) and radial pair potential molecular dynamics (RPP-MD) for a range of elements, temperature, and density. By extracting the optimal RPP from KS-MD data using force matching, we constrain its functional form and dismiss classes of potentials that assume a constant power law for small interparticle distances. Our results show excellent agreement between RPP-MD and KS-MD for multiple metrics of accuracy at temperatures of only a few electron volts. The use of RPPs offers orders of magnitude decrease in computational cost and indicates that three-body potentials are not required beyond temperatures of a few eV. Due to its efficiency, the validated RPP-MD provides an avenue for reducing errors due to finite-size effects that can be on the order of ∼ 20 %.

More Details

Elucidating size effects on the yield strength of single-crystal Cu via the Richtmyer–Meshkov instability

Journal of Applied Physics

Stewart, James A.; Wood, Mitchell A.; Olles, Joseph O.

Capturing the dynamic response of a material under high strain-rate deformation often demands challenging and time consuming experimental effort. While shock hydrodynamic simulation methods can aid in this area, a priori characterizations of the material strength under shock loading and spall failure are needed in order to parameterize constitutive models needed for these computational tools. Moreover, parameterizations of strain-rate-dependent strength models are needed to capture the full suite of Richtmyer–Meshkov instability (RMI) behavior of shock compressed metals, creating an unrealistic demand for these training data solely on experiments. Herein, we sweep a large range of geometric, crystallographic, and shock conditions within molecular dynamics (MD) simulations and demonstrate the breadth of RMI in Cu that can be captured from the atomic scale. In this work, yield strength measurements from jetted and arrested material from a sinusoidal surface perturbation were quantified as YRMI = 0.787 ± 0.374 GPa, higher than strain-rate-independent models used in experimentally matched hydrodynamic simulations. Defect-free, single-crystal Cu samples used in MD will overestimate YRMI, but the drastic scale difference between experiment and MD is highlighted by high confidence neighborhood clustering predictions of RMI characterizations, yielding incorrect classifications.

More Details

Extending the accuracy of the SNAP interatomic potential form

Journal of Chemical Physics

Wood, Mitchell A.; Thompson, Aidan P.

The Spectral Neighbor Analysis Potential (SNAP) is a classical interatomic potential that expresses the energy of each atom as a linear function of selected bispectrum components of the neighbor atoms. An extension of the SNAP form is proposed that includes quadratic terms in the bispectrum components. The extension is shown to provide a large increase in accuracy relative to the linear form, while incurring only a modest increase in computational cost. The mathematical structure of the quadratic SNAP form is similar to the embedded atom method (EAM), with the SNAP bispectrum components serving as counterparts to the two-body density functions in EAM. The effectiveness of the new form is demonstrated using an extensive set of training data for tantalum structures. Similar to artificial neural network potentials, the quadratic SNAP form requires substantially more training data in order to prevent overfitting. The quality of this new potential form is measured through a robust cross-validation analysis.

More Details
Results 1–25 of 63
Results 1–25 of 63