Publications

Results 1–25 of 30
Skip to search filters

Demonstrating improved application performance using dynamic monitoring and task mapping

2014 IEEE International Conference on Cluster Computing, CLUSTER 2014

Brandt, James M.; Devine, Karen D.; Gentile, Ann C.; Pedretti, Kevin P.

This work demonstrates the integration of monitoring, analysis, and feedback to perform application-to-resource mapping that adapts to both static architecture features and dynamic resource state. In particular, we present a framework for mapping MPI tasks to compute resources based on run-time analysis of system-wide network data, architecture-specific routing algorithms, and application communication patterns. We address several challenges. Within each node, we collect local utilization data. We consolidate that information to form a global view of system performance, accounting for system-wide factors including competing applications. We provide an interface for applications to query the global information. Then we exploit the system information to change the mapping of tasks to nodes so that system bottlenecks are avoided. We demonstrate the benefit of this monitoring and feedback by remapping MPI tasks based on route-length, bandwidth, and credit-stalls metrics for a parallel sparse matrix-vector multiplication kernel. In the best case, remapping based on dynamic network information in a congested environment recovered 48.9% of the time lost to congestion, reducing matrix-vector multiplication time by 7.8%. Our experiments focus on the Cray XE/XK platform, but the integration concepts are generally applicable to any platform for which applicable metrics and route knowledge can be obtained.

More Details

Demonstration of a Legacy Application's Path to Exascale - ASC L2 Milestone 4467

Barrett, Brian B.; Kelly, Suzanne M.; Klundt, Ruth A.; Laros, James H.; Leung, Vitus J.; Levenhagen, Michael J.; Lofstead, Gerald F.; Moreland, Kenneth D.; Oldfield, Ron A.; Pedretti, Kevin P.; Rodrigues, Arun; Barrett, Richard F.; Ward, Harry L.; Vandyke, John P.; Vaughan, Courtenay T.; Wheeler, Kyle B.; Brandt, James M.; Brightwell, Ronald B.; Curry, Matthew L.; Fabian, Nathan D.; Ferreira, Kurt; Gentile, Ann C.; Hemmert, Karl S.

Abstract not provided.

Final Review of FY17 ASC CSSE L2 Milestone #6018 entitled "Analyzing Power Usage Characteristics of Workloads Running on Trinity"

Hoekstra, Robert J.; Hammond, Simon D.; Hemmert, Karl S.; Gentile, Ann C.; Oldfield, Ron A.; Lang, Mike L.; Martin, Steve M.

The presentation documented the technical approach of the team and summary of the results with sufficient detail to demonstrate both the value and the completion of the milestone. A separate SAND report was also generated with more detail to supplement the presentation.

More Details

Integrated System and Application Continuous Performance Monitoring and Analysis Capability

Aaziz, Omar R.; Allan, Benjamin A.; Brandt, James M.; Cook, Jeanine C.; Devine, Karen D.; Elliott, James E.; Gentile, Ann C.; Hammond, Simon D.; Kelley, Brian M.; Lopatina, Lena L.; Moore, Stan G.; Olivier, Stephen L.; Pedretti, Kevin P.; Poliakoff, David Z.; Pawlowski, Roger P.; Regier, Phillip A.; Schmitz, Mark E.; Schwaller, Benjamin S.; Surjadidjaja, Vanessa S.; Swan, Matthew S.; Tucker, Nick T.; Tucker, Tom T.; Vaughan, Courtenay T.; Walton, Sara P.

Scientific applications run on high-performance computing (HPC) systems are critical for many national security missions within Sandia and the NNSA complex. However, these applications often face performance degradation and even failures that are challenging to diagnose. To provide unprecedented insight into these issues, the HPC Development, HPC Systems, Computational Science, and Plasma Theory & Simulation departments at Sandia crafted and completed their FY21 ASC Level 2 milestone entitled "Integrated System and Application Continuous Performance Monitoring and Analysis Capability." The milestone created a novel integrated HPC system and application monitoring and analysis capability by extending Sandia's Kokkos application portability framework, Lightweight Distributed Metric Service (LDMS) monitoring tool, and scalable storage, analysis, and visualization pipeline. The extensions to Kokkos and LDMS enable collection and storage of application data during run time, as it is generated, with negligible overhead. This data is combined with HPC system data within the extended analysis pipeline to present relevant visualizations of derived system and application metrics that can be viewed at run time or post run. This new capability was evaluated using several week-long, 290-node runs of Sandia's ElectroMagnetic Plasma In Realistic Environments ( EMPIRE ) modeling and design tool and resulted in 1TB of application data and 50TB of system data. EMPIRE developers remarked this capability was incredibly helpful for quickly assessing application health and performance alongside system state. In short, this milestone work built the foundation for expansive HPC system and application data collection, storage, analysis, visualization, and feedback framework that will increase total scientific output of Sandia's HPC users.

More Details

Integrated System and Application Continuous Performance Monitoring and Analysis Capability

Brandt, James M.; Cook, Jeanine C.; Aaziz, Omar R.; Allan, Benjamin A.; Devine, Karen D.; Elliott, James J.; Gentile, Ann C.; Hammond, Simon D.; Kelley, Brian M.; Lopatina, Lena L.; Moore, Stan G.; Olivier, Stephen L.; Pedretti, Kevin P.; Poliakoff, David Z.; Pawlowski, Roger P.; Regier, Phillip A.; Schmitz, Mark E.; Schwaller, Benjamin S.; Surjadidjaja, Vanessa S.; Swan, Matthew S.; Tucker, Tom T.; Tucker, Nick T.; Vaughan, Courtenay T.; Walton, Sara P.

Abstract not provided.

Large-Scale System Monitoring Experiences and Recommendations

Proceedings - IEEE International Conference on Cluster Computing, ICCC

Ahlgren, Ville; Andersson, Stefan; Brandt, James M.; Cardo, Nicholas; Chunduri, Sudheer; Enos, Jeremy; Fields, Parks; Gentile, Ann C.; Gerber, Richard; Gienger, Michael; Greenseid, Joe; Greiner, Annette; Hadri, Bilel; He, Yun; Hoppe, Dennis; Kaila, Urpo; Kelly, Kaki; Klein, Mark; Kristiansen, Alex; Leak, Steve; Mason, Mike; Pedretti, Kevin P.; Piccinali, Jean G.; Repik, Jason; Rogers, Jim; Salminen, Susanna; Showerman, Mike; Whitney, Cary; Williams, Jim

Monitoring of High Performance Computing (HPC) platforms is critical to successful operations, can provide insights into performance-impacting conditions, and can inform methodologies for improving science throughput. However, monitoring systems are not generally considered core capabilities in system requirements specifications nor in vendor development strategies. In this paper we present work performed at a number of large-scale HPC sites towards developing monitoring capabilities that fill current gaps in ease of problem identification and root cause discovery. We also present our collective views, based on the experiences presented, on needs and requirements for enabling development by vendors or users of effective sharable end-to-end monitoring capabilities.

More Details

Large-Scale System Monitoring Experiences and Recommendations

Ahlgren, V.A.; Andersson, S.A.; Brandt, James M.; Cardo, N.C.; Chunduri, S.C.; Enos, J.E.; Fields, P.F.; Gentile, Ann C.; Gerber, R.B.; Gienger, M.G.; Greenseid, J.G.; Greiner, A.G.; Hadri, B.H.; He, Y.H.; Hoppe, D.H.; Kaila, U.K.; Kelly, K.K.; Klein, M.K.; Kristiansen, A.K.; Leak, S.L.; Mason, M.M.; Pedretti, Kevin P.; Piccinali, J-G.P.; Repik, Jason; Rogers, J.R.; Salminen, S.S.; showerman, m.s.; Whitney, C.W.; Williams, J.W.

Abstract not provided.

Overtime: A tool for analyzing performance variation due to network interference

Proceedings of the 3rd ExaMPI Workshop at the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2015

Grant, Ryan E.; Pedretti, Kevin P.; Gentile, Ann C.

Shared networks create unique challenges in obtaining con-sistent performance across jobs for large systems when not using exclusive system-wide allocations. In order to provide good system utilization, resource managers allocate system space to multiple jobs. These multiple independent node al-locations can interfere with each other through their shared network. This work provides a method of observing and measuring the impact of network contention due to interfer-ence from other jobs through a continually running bench-mark application and the use of network performance coun-Ters. This is the first work to measure network interfer-ence using specially designed benchmarks and network per-formance counters.

More Details

Report of experiments and evidence for ASC L2 milestone 4467 : demonstration of a legacy application's path to exascale

Barrett, Brian B.; Kelly, Suzanne M.; Klundt, Ruth A.; Laros, James H.; Leung, Vitus J.; Levenhagen, Michael J.; Lofstead, Gerald F.; Moreland, Kenneth D.; Oldfield, Ron A.; Pedretti, Kevin P.; Rodrigues, Arun; Barrett, Richard F.; Ward, Harry L.; Vandyke, John P.; Vaughan, Courtenay T.; Wheeler, Kyle B.; Brandt, James M.; Brightwell, Ronald B.; Curry, Matthew L.; Fabian, Nathan D.; Ferreira, Kurt; Gentile, Ann C.; Hemmert, Karl S.

This report documents thirteen of Sandia's contributions to the Computational Systems and Software Environment (CSSE) within the Advanced Simulation and Computing (ASC) program between fiscal years 2009 and 2012. It describes their impact on ASC applications. Most contributions are implemented in lower software levels allowing for application improvement without source code changes. Improvements are identified in such areas as reduced run time, characterizing power usage, and Input/Output (I/O). Other experiments are more forward looking, demonstrating potential bottlenecks using mini-application versions of the legacy codes and simulating their network activity on Exascale-class hardware. The purpose of this report is to prove that the team has completed milestone 4467-Demonstration of a Legacy Application's Path to Exascale. Cielo is expected to be the last capability system on which existing ASC codes can run without significant modifications. This assertion will be tested to determine where the breaking point is for an existing highly scalable application. The goal is to stretch the performance boundaries of the application by applying recent CSSE RD in areas such as resilience, power, I/O, visualization services, SMARTMAP, lightweight LWKs, virtualization, simulation, and feedback loops. Dedicated system time reservations and/or CCC allocations will be used to quantify the impact of system-level changes to extend the life and performance of the ASC code base. Finally, a simulation of anticipated exascale-class hardware will be performed using SST to supplement the calculations. Determine where the breaking point is for an existing highly scalable application: Chapter 15 presented the CSSE work that sought to identify the breaking point in two ASC legacy applications-Charon and CTH. Their mini-app versions were also employed to complete the task. There is no single breaking point as more than one issue was found with the two codes. The results were that applications can expect to encounter performance issues related to the computing environment, system software, and algorithms. Careful profiling of runtime performance will be needed to identify the source of an issue, in strong combination with knowledge of system software and application source code.

More Details
Results 1–25 of 30
Results 1–25 of 30