Publications

12 Results
Skip to search filters

Atomic step disorder on polycrystalline surfaces leads to spatially inhomogeneous work functions

Journal of Vacuum Science and Technology A

Bussmann, Ezra B.; smith, sean w.; Scrymgeour, David S.; Brumbach, Michael T.; Lu, Ping L.; Dickens, Sara D.; Michael, Joseph R.; Ohta, Taisuke O.; Hjalmarson, Harold P.; Schultz, Peter A.; Clem, Paul G.; Hopkins, Matthew M.; Moore, Christopher M.

Structural disorder causes materials’ surface electronic properties, e.g., work function ([Formula: see text]), to vary spatially, yet it is challenging to prove exact causal relationships to underlying ensemble disorder, e.g., roughness or granularity. For polycrystalline Pt, nanoscale resolution photoemission threshold mapping reveals a spatially varying [Formula: see text] eV over a distribution of (111) vicinal grain surfaces prepared by sputter deposition and annealing. With regard to field emission and related phenomena, e.g., vacuum arc initiation, a salient feature of the [Formula: see text] distribution is that it is skewed with a long tail to values down to 5.4 eV, i.e., far below the mean, which is exponentially impactful to field emission via the Fowler–Nordheim relation. We show that the [Formula: see text] spatial variation and distribution can be explained by ensemble variations of granular tilts and surface slopes via a Smoluchowski smoothing model wherein local [Formula: see text] variations result from spatially varying densities of electric dipole moments, intrinsic to atomic steps, that locally modify [Formula: see text]. Atomic step-terrace structure is confirmed with scanning tunneling microscopy (STM) at several locations on our surfaces, and prior works showed STM evidence for atomic step dipoles at various metal surfaces. From our model, we find an atomic step edge dipole [Formula: see text] D/edge atom, which is comparable to values reported in studies that utilized other methods and materials. Our results elucidate a connection between macroscopic [Formula: see text] and the nanostructure that may contribute to the spread of reported [Formula: see text] for Pt and other surfaces and may be useful toward more complete descriptions of polycrystalline metals in the models of field emission and other related vacuum electronics phenomena, e.g., arc initiation.

More Details

Analysis of micromixers and biocidal coatings on water-treatment membranes to minimize biofouling

Altman, Susan J.; Clem, Paul G.; Cook, Adam W.; Hart, William E.; Ho, Clifford K.; Jones, Howland D.; Sun, Amy C.; Webb, Stephen W.

Biofouling, the unwanted growth of biofilms on a surface, of water-treatment membranes negatively impacts in desalination and water treatment. With biofouling there is a decrease in permeate production, degradation of permeate water quality, and an increase in energy expenditure due to increased cross-flow pressure needed. To date, a universal successful and cost-effect method for controlling biofouling has not been implemented. The overall goal of the work described in this report was to use high-performance computing to direct polymer, material, and biological research to create the next generation of water-treatment membranes. Both physical (micromixers - UV-curable epoxy traces printed on the surface of a water-treatment membrane that promote chaotic mixing) and chemical (quaternary ammonium groups) modifications of the membranes for the purpose of increasing resistance to biofouling were evaluated. Creation of low-cost, efficient water-treatment membranes helps assure the availability of fresh water for human use, a growing need in both the U. S. and the world.

More Details
12 Results
12 Results