Results 376–400 of 9,998
Skip to search filters

A New Route to Quantum-Scale Structures through a Novel Enhanced Germanium Diffusion Mechanism

Wang, George T.; Lu, Ping L.; Sapkota, Keshab R.; Baczewski, Andrew D.; Campbell, Quinn C.; Schultz, Peter A.; Jones, Kevin S.; Turner, Emily M.; Sharrock, Chappel J.; Law, Mark E.; Yang, Hongbin Y.

This project sought to develop a fundamental understanding of the mechanisms underlying a newly observed enhanced germanium (Ge) diffusion process in silicon germanium (SiGe) semiconductor nanostructures during thermal oxidation. Using a combination of oxidationdiffusion experiments, high resolution imaging, and theoretical modeling, a model for the enhanced Ge diffusion mechanism was proposed. Additionally, a nanofabrication approach utilizing this enhanced Ge diffusion mechanism was shown to be applicable to arbitrary 3D shapes, leading to the fabrication of stacked silicon quantum dots embedded in SiGe nanopillars. A new wet etch-based method for preparing 3D nanostructures for highresolution imaging free of obscuring material or damage was also developed. These results enable a new method for the controlled and scalable fabrication of on-chip silicon nanostructures with sub-10 nm dimensions needed for next generation microelectronics, including low energy electronics, quantum computing, sensors, and integrated photonics.

More Details

Critical Infrastructure Decision-Making under Long-Term Climate Hazard Uncertainty: The Need for an Integrated, Multidisciplinary Approach

Staid, Andrea S.; Fleming Lindsley, Elizabeth S.; Gunda, Thushara G.; Jackson, Nicole D.

U.S. critical infrastructure assets are often designed to operate for decades, and yet long-term planning practices have historically ignored climate change. With the current pace of changing operational conditions and severe weather hazards, research is needed to improve our ability to translate complex, uncertain risk assessment data into actionable inputs to improve decision-making for infrastructure planning. Decisions made today need to explicitly account for climate change – the chronic stressors, the evolution of severe weather events, and the wide-ranging uncertainties. If done well, decision making with climate in mind will result in increased resilience and decreased impacts to our lives, economies, and national security. We present a three-tier approach to create the research products needed in this space: bringing together climate projection data, severe weather event modeling, asset-level impacts, and contextspecific decision constraints and requirements. At each step, it is crucial to capture uncertainties and to communicate those uncertainties to decision-makers. While many components of the necessary research are mature (i.e., climate projection data), there has been little effort to develop proven tools for long-term planning in this space. The combination of chronic and acute stressors, spatial and temporal uncertainties, and interdependencies among infrastructure sectors coalesce into a complex decision space. By applying known methods from decision science and data analysis, we can work to demonstrate the value of an interdisciplinary approach to climate-hazard decision making for longterm infrastructure planning.

More Details

ERAS: Enabling the Integration of Real-World Intellectual Properties (IPs) in Architectural Simulators

Nema, Shubham N.; Razdan, Rohin R.; Rodrigues, Arun; Hemmert, Karl S.; Voskuilen, Gwendolyn R.; Adak, Debratim A.; Hammond, Simon D.; Awad, Amro A.; Hughes, Clayton H.

Sandia National Laboratories is investigating scalable architectural simulation capabilities with a focus on simulating and evaluating highly scalable supercomputers for high performance computing applications. There is a growing demand for RTL model integration to provide the capability to simulate customized node architectures and heterogeneous systems. This report describes the first steps integrating the ESSENTial Signal Simulation Enabled by Netlist Transforms (ESSENT) tool with the Structural Simulation Toolkit (SST). ESSENT can emit C++ models from models written in FIRRTL to automatically generate components. The integration workflow will automatically generate the SST component and necessary interfaces to ’plug’ the ESSENT model into the SST framework.

More Details

A new equation of state for copper

Carpenter, John H.

A new copper equation of state is developed utilizing the available experimental data in addition to recent theoretical calculations. Semi-empirical models are fit to the data and the results are tabulated in the SNL SESAME format. Comparison to other copper EOS tables are given, along with recommendations of which tables provide the best accuracy.

More Details

Casual Evaluations for Identifying Differences between Observations and Earth System Models

Nichol, Jeffrey N.; Peterson, Matthew G.; Peterson, Kara J.

We use a nascent data-driven causal discovery method to find and compare causal relationships in observed data and climate model output. We consider ten different features in the Arctic climate collected from public databases on observational and Energy Exascale Earth System Model (E3SM) data. In identifying and analyzing the resulting causal networks, we make meaningful comparisons between observed and climate model interdependencies. This work demonstrates our ability to apply the PCMCI causal discovery algorithm to Arctic climate data, that there are noticeable similarities between observed and simulated Arctic climate dynamics, and that further work is needed to identify specific areas for improvement to better align models with natural observations.

More Details

Science & Engineering of Cyber Security by Uncertainty Quantification and Rigorous Experimentation (SECURE) HANDBOOK

Pinar, Ali P.; Tarman, Thomas D.; Swiler, Laura P.; Gearhart, Jared L.; Hart, Derek H.; Vugrin, Eric D.; Cruz, Gerardo C.; Arguello, Bryan A.; Geraci, Gianluca G.; Debusschere, Bert D.; Hanson, Seth T.; Outkin, Alexander V.; Thorpe, Jamie T.; Hart, William E.; Sahakian, Meghan A.; Gabert, Kasimir G.; Glatter, Casey J.; Johnson, Emma S.; Punla-Green, She?ifa P.

Abstract not provided.

Large-scale Nonlinear Approaches for Inference of Reporting Dynamics and Unobserved SARS-CoV-2 Infections

Hart, William E.; Bynum, Michael L.; Laird, Carl L.; Siirola, John D.; Staid, Andrea S.

This work focuses on estimation of unknown states and parameters in a discrete-time, stochastic, SEIR model using reported case counts and mortality data. An SEIR model is based on classifying individuals with respect to their status in regards to the progression of the disease, where S is the number individuals who remain susceptible to the disease, E is the number of individuals who have been exposed to the disease but not yet infectious, I is the number of individuals who are currently infectious, and R is the number of recovered individuals. For convenience, we include in our notation the number of infections or transmissions, T, that represents the number of individuals transitioning from compartment S to compartment E over a particular interval. Similarly, we use C to represent the number of reported cases.

More Details

FAIR DEAL Grand Challenge Overview

Allemang, Christopher R.; Anderson, Evan M.; Baczewski, Andrew D.; Bussmann, Ezra B.; Butera, Robert E.; Campbell, DeAnna M.; Campbell, Quinn C.; Carr, Stephen M.; Frederick, Esther F.; Gamache, Phillip G.; Gao, Xujiao G.; Grine, Albert D.; Gunter, Mathew M.; Halsey, Connor H.; Ivie, Jeffrey A.; Katzenmeyer, Aaron M.; Leenheer, Andrew J.; Lepkowski, William L.; Lu, Tzu-Ming L.; Mamaluy, Denis M.; Mendez Granado, Juan P.; Pena, Luis F.; Schmucker, Scott W.; Scrymgeour, David S.; Tracy, Lisa A.; Wang, George T.; Ward, Dan W.; Young, Steve M.

While it is likely practically a bad idea to shrink a transistor to the size of an atom, there is no arguing that it would be fantastic to have atomic-scale control over every aspect of a transistor – a kind of crystal ball to understand and evaluate new ideas. This project showed that it was possible to take a niche technique used to place dopants in silicon with atomic precision and apply it broadly to study opportunities and limitations in microelectronics. In addition, it laid the foundation to attaining atomic-scale control in semiconductor manufacturing more broadly.

More Details

Spatio-temporal Estimates of Disease Transmission Parameters for COVID-19 with a Fully-Coupled, County-Level Model of the United States

Cummings, Derek A.; Hart, William E.; García-Carreras, Bernardo G.; Lanning, Carl D.; Lessler, Justin L.; Staid, Andrea S.

Sandia National Laboratories has developed a capability to estimate parameters of epidemiological models from case reporting data to support responses to the COVID-19 pandemic. A differentiating feature of this work is the ability to simultaneously estimate county-specific disease transmission parameters in a nation-wide model that considers mobility between counties. The approach is focused on estimating parameters in a stochastic SEIR model that considers mobility between model patches (i.e., counties) as well as additional infectious compartments. The inference engine developed by Sandia includes (1) reconstruction and (2) transmission parameter inference. Reconstruction involves estimating current population counts within each of the compartments in a modified SEIR model from reported case data. Reconstruction produces input for the inference formulations, and it provides initial conditions that can be used in other modeling and planning efforts. Inference involves the solution of a large-scale optimization problem to estimate the time profiles for the transmission parameters in each county. These provide quantification of changes in the transmission parameter over time (e.g., due to impact of intervention strategies). This capability has been implemented in a Python-based software package, epi_inference, that makes extensive use of Pyomo [5] and IPOPT [10] to formulate and solve the inference formulations.

More Details

Final report of activities for the LDRD-express project #223796 titled: “Fluid models of charged species transport: numerical methods with mathematically guaranteed properties”, PI: Ignacio Tomas, Co-PI: John Shadid

Tomas, Ignacio T.; Shadid, John N.; Crockatt, Michael M.; Pawlowski, Roger P.; Maier, Matthias M.; Guermond, Jean-Luc G.

This report summarizes the findings and outcomes of the LDRD-express project with title “Fluid models of charged species transport: numerical methods with mathematically guaranteed properties”. The primary motivation of this project was the computational/mathematical exploration of the ideas advanced aiming to improve the state-of-the-art on numerical methods for the one-fluid Euler-Poisson models and gain some understanding on the Euler-Maxwell model. Euler-Poisson and Euler-Maxwell, by themselves are not the most technically relevant PDE plasma-models. However, both of them are elementary building blocks of PDE-models used in actual technical applications and include most (if not all) of their mathematical difficulties. Outside the classical ideal MHD models, rigorous mathematical and numerical understanding of one-fluid models is still a quite undeveloped research area, and the treatment/understanding of boundary conditions is minimal (borderline non-existent) at this point in time. This report focuses primarily on bulk-behaviour of Euler-Poisson’s model, touching boundary conditions only tangentially.

More Details

Emergent Recursive Multiscale Interaction in Complex Systems

Naugle, Asmeret B.; Doyle, Casey L.; Sweitzer, Matthew; Rothganger, Fredrick R.; Verzi, Stephen J.; Lakkaraju, Kiran L.; Kittinger, Robert; Bernard, Michael L.; Chen, Yuguo C.; Loyal, Joshua L.; Mueen, Abdullah M.

This project studied the potential for multiscale group dynamics in complex social systems, including emergent recursive interaction. Current social theory on group formation and interaction focuses on a single scale (individuals forming groups) and is largely qualitative in its explanation of mechanisms. We combined theory, modeling, and data analysis to find evidence that these multiscale phenomena exist, and to investigate their potential consequences and develop predictive capabilities. In this report, we discuss the results of data analysis showing that some group dynamics theory holds at multiple scales. We introduce a new theory on communicative vibration that uses social network dynamics to predict group life cycle events. We discuss a model of behavioral responses to the COVID-19 pandemic that incorporates influence and social pressures. Finally, we discuss a set of modeling techniques that can be used to simulate multiscale group phenomena.

More Details

Structure-preserving numerical discretizations for domains with boundaries

Eldred, Christopher

This SAND report documents Exploratory Express LDRD Project 223790, "Structure-preserving numerical discretizations for domains with boundaries", which developed a method to incorporate consistent treatment of domain boundaries and arbitrary boundary conditions in discrete exterior calculus (DEC) for arbitrary polygonal (2D) and tensor-product structure prism (3D) grids. The new DEC required the development of novel discrete exterior derivatives, boundary operators, wedge products and Hodge stars. This was accomplished through the use of boundary extension and the blending of known 2D operators on the interior with 1D operators on the boundary. The Hodge star was based on the Voronoi Hodge star, and retained the limitation of a triangular circumcentric primal or dual grid along with low-order accuracy. In addition to the new DEC, two related software packages were written: one for the study of DEC operators on arbitrary polygonal and polyhedral grids using both symbolic and numerical approaches and one for a (thermal) shallow water testbed using TRiSK-type numerics. Immediately relevant (already funded, through CANGA) followup work is the development of a high-order, geometrically flexible Hodge star and structure-preserving, high-order, oscillation-limiting transport operators (using WENO) for n-forms on arbitrary 2D and 3D grids. This will provide all of the machinery required for a high-order version of TRiSK with boundaries on arbitrary 2D and tensor-product 3D grids, which is applicable to both the atmospheric (CRM in E3SM-MMF) and oceanic (MPAS-O) components of E3SM.

More Details

White paper on Verification and Validation for Cyber Emulation Models

Swiler, Laura P.

All disciplines that use models to predict the behavior of real-world systems need to determine the accuracy of the models’ results. Techniques for verification, validation, and uncertainty quantification (VVUQ) focus on improving the credibility of computational models and assessing their predictive capability. VVUQ emphasizes rigorous evaluation of models and how they are applied to improve understanding of model limitations and quantify the accuracy of model predictions.

More Details

The Fingerprints of Stratospheric Aerosol Injection in E3SM

Wagman, Benjamin M.; Swiler, Laura P.; Chowdhary, Kamaljit S.; Hillman, Benjamin H.

The June 15, 1991 Mt. Pinatubo eruption is simulated in E3SM by injecting 10 Tg of SO2 gas in the stratosphere, turning off prescribed volcanic aerosols, and enabling E3SM to treat stratospheric volcanic aerosols prognostically. This experimental prognostic treatment of volcanic aerosols in the stratosphere results in some realistic behaviors (SO2 evolves into H2SO4 which heats the lower stratosphere), and some expected biases (H2SO4 aerosols sediment out of the stratosphere too quickly). Climate fingerprinting techniques are used to establish a Mt. Pinatubo fingerprint based on the vertical profile of temperature from the E3SMv1 DECK ensemble. By projecting reanalysis data and preindustrial simulations onto the fingerprint, the Mt. Pinatubo stratospheric heating anomaly is detected. Projecting the experimental prognostic aerosol simulation onto the fingerprint also results in a detectable heating anomaly, but, as expected, the duration is too short relative to reanalysis data.

More Details
Results 376–400 of 9,998
Results 376–400 of 9,998