Publications

19 Results
Skip to search filters

NEAMS Nuclear Waste Management IPSC : evaluation and selection of tools for the quality environment

Vigil, Dena V.; Edwards, Harold C.; Bouchard, Julie F.; Stubblefield, W.A.

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. These M&S capabilities are to be managed, verified, and validated within the NEAMS Nuclear Waste Management IPSC quality environment. M&S capabilities and the supporting analysis workflow and simulation data management tools will be distributed to end-users from this same quality environment. The same analysis workflow and simulation data management tools that are to be distributed to end-users will be used for verification and validation (V&V) activities within the quality environment. This strategic decision reduces the number of tools to be supported, and increases the quality of tools distributed to end users due to rigorous use by V&V activities. This report documents an evaluation of the needs, options, and tools selected for the NEAMS Nuclear Waste Management IPSC quality environment. The objective of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) program element is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to assess quantitatively the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. This objective will be fulfilled by acquiring and developing M&S capabilities, and establishing a defensible level of confidence in these M&S capabilities. The foundation for assessing the level of confidence is based upon the rigor and results from verification, validation, and uncertainty quantification (V&V and UQ) activities. M&S capabilities are to be managed, verified, and validated within the NEAMS Nuclear Waste Management IPSC quality environment. M&S capabilities and the supporting analysis workflow and simulation data management tools will be distributed to end-users from this same quality environment. The same analysis workflow and simulation data management tools that are to be distributed to end-users will be used for verification and validation (V&V) activities within the quality environment. This strategic decision reduces the number of tools to be supported, and increases the quality of tools distributed to end users due to rigorous use by V&V activities. NEAMS Nuclear Waste Management IPSC V&V and UQ practices and evidence management goals are documented in the V&V Plan. This V&V plan includes a description of the quality environment into which M&S capabilities are imported and V&V and UQ activities are managed. The first phase of implementing the V&V plan is to deploy an initial quality environment through the acquisition and integration of a set of software tools. An evaluation of the needs, options, and tools selected for the quality environment is given in this report.

More Details

Assessing the Near-Term Risk of Climate Uncertainty:Interdependencies among the U.S. States

Backus, George A.; Trucano, Timothy G.; Robinson, David G.; Adams, Brian M.; Richards, Elizabeth H.; Siirola, John D.; Boslough, Mark B.; Taylor, Mark A.; Conrad, Stephen H.; Kelic, Andjelka; Roach, Jesse D.; Warren, Drake E.; Ballantine, Marissa D.; Stubblefield, W.A.; Snyder, Lillian A.; Finley, Ray E.; Horschel, Daniel S.; Ehlen, Mark E.; Klise, Geoffrey T.; Malczynski, Leonard A.; Stamber, Kevin L.; Tidwell, Vincent C.; Vargas, Vanessa N.; Zagonel, Aldo A.

Abstract not provided.

Sustaining knowledge in the neutron generator community and benchmarking study

Huff, Tameka B.; Turgeon, Jennifer T.; Baldonado, Esther B.; Stubblefield, W.A.; Kennedy, Bryan C.; Saba, Antony S.

In 2004, the Responsive Neutron Generator Product Deployment department embarked upon a partnership with the Systems Engineering and Analysis knowledge management (KM) team to develop knowledge management systems for the neutron generator (NG) community. This partnership continues today. The most recent challenge was to improve the current KM system (KMS) development approach by identifying a process that will allow staff members to capture knowledge as they learn it. This 'as-you-go' approach will lead to a sustainable KM process for the NG community. This paper presents a historical overview of NG KMSs, as well as research conducted to move toward sustainable KM.

More Details

Collaborative evaluation of early design decisions and product manufacturability

Proceedings of the Hawaii International Conference on System Sciences

Kleban, S.D.; Stubblefield, W.A.; Mitchiner, K.W.; Mitchiner, John L.; Arms, M.

In manufacturing, the conceptual design and detailed design stages are typically regarded as sequential and distinct. Decisions made in conceptual design are often made with little information as to how they would affect detailed design or manufacturing process specification. Many possibilities and unknowns exist in conceptual design where ideas about product shape and functionality are changing rapidly. Few if any tools exist to aid in this difficult, amorphous stage in contrast to the many CAD and analysis tools for detailed design where much more is known about the final product. The Materials Process Design Environment (MPDE) is a collaborative problem solving environment (CPSE) that was developed so geographically dispersed designers in both the conceptual and detailed stage can work together and understand the impacts of their design decisions on functionality, cost and manufacturability.

More Details
19 Results
19 Results