Publications

15 Results
Skip to search filters

Assessing atomically thin delta-doping of silicon using mid-infrared ellipsometry

Journal of Materials Research

Katzenmeyer, Aaron M.; Luk, Ting S.; Bussmann, Ezra B.; Young, Steve M.; Anderson, Evan M.; Marshall, Michael T.; Ohlhausen, J.A.; Kotula, Paul G.; Lu, Ping L.; Campbell, DeAnna M.; Lu, Tzu-Ming L.; Liu, Peter Q.; Ward, Daniel R.; Misra, Shashank M.

Hydrogen lithography has been used to template phosphine-based surface chemistry to fabricate atomic-scale devices, a process we abbreviate as atomic precision advanced manufacturing (APAM). Here, we use mid-infrared variable angle spectroscopic ellipsometry (IR-VASE) to characterize single-nanometer thickness phosphorus dopant layers (δ-layers) in silicon made using APAM compatible processes. A large Drude response is directly attributable to the δ-layer and can be used for nondestructive monitoring of the condition of the APAM layer when integrating additional processing steps. The carrier density and mobility extracted from our room temperature IR-VASE measurements are consistent with cryogenic magneto-transport measurements, showing that APAM δ-layers function at room temperature. Finally, the permittivity extracted from these measurements shows that the doping in the APAM δ-layers is so large that their low-frequency in-plane response is reminiscent of a silicide. However, there is no indication of a plasma resonance, likely due to reduced dimensionality and/or low scattering lifetime.

More Details

Low thermal budget high-k/metal surface gate for buried donor-based devices

JPhys Materials

Anderson, Evan M.; Campbell, De A.; Maurer, Leon N.; Baczewski, Andrew D.; Marshall, Michael T.; Lu, Tzu-Ming L.; Lu, Ping L.; Tracy, Lisa A.; Schmucker, Scott W.; Ward, Daniel R.; Misra, Shashank M.

Atomic precision advanced manufacturing (APAM) offers creation of donor devices in an atomically thin layer doped beyond the solid solubility limit, enabling unique device physics. This presents an opportunity to use APAM as a pathfinding platform to investigate digital electronics at the atomic limit. Scaling to smaller transistors is increasingly difficult and expensive, necessitating the investigation of alternative fabrication paths that extend to the atomic scale. APAM donor devices can be created using a scanning tunneling microscope (STM). However, these devices are not currently compatible with industry standard fabrication processes. There exists a tradeoff between low thermal budget (LT) processes to limit dopant diffusion and high thermal budget (HT) processes to grow defect-free layers of epitaxial Si and gate oxide. To this end, we have developed an LT epitaxial Si cap and LT deposited Al2O3 gate oxide integrated with an atomically precise single-electron transistor (SET) that we use as an electrometer to characterize the quality of the gate stack. The surface-gated SET exhibits the expected Coulomb blockade behavior. However, the gate’s leverage over the SET is limited by defects in the layers above the SET, including interfaces between the Si and oxide, and structural and chemical defects in the Si cap. We propose a more sophisticated gate stack and process flow that is predicted to improve performance in future atomic precision devices.

More Details

Designer quantum materials

Misra, Shashank M.; Ward, Daniel R.; Baczewski, Andrew D.; Campbell, Quinn C.; Schmucker, Scott W.; Mounce, Andrew M.; Tracy, Lisa A.; Lu, Tzu-Ming L.; Marshall, Michael T.; Campbell, DeAnna M.

Quantum materials have long promised to revolutionize everything from energy transmission (high temperature superconductors) to both quantum and classical information systems (topological materials). However, their discovery and application has proceeded in an Edisonian fashion due to both an incomplete theoretical understanding and the difficulty of growing and purifying new materials. This project leverages Sandia's unique atomic precision advanced manufacturing (APAM) capability to design small-scale tunable arrays (designer materials) made of donors in silicon. Their low-energy electronic behavior can mimic quantum materials, and can be tuned by changing the fabrication parameters for the array, thereby enabling the discovery of materials systems which can't yet be synthesized. In this report, we detail three key advances we have made towards development of designer quantum materials. First are advances both in APAM technique and underlying mechanisms required to realize high-yielding donor arrays. Second is the first-ever observation of distinct phases in this material system, manifest in disordered 2D sheets of donors. Finally are advances in modeling the electronic structure of donor clusters and regular structures incorporating them, critical to understanding whether an array is expected to show interesting physics. Combined, these establish the baseline knowledge required to manifest the strongly-correlated phases of the Mott-Hubbard model in donor arrays, the first step to deploying APAM donor arrays as analogues of quantum materials.

More Details
15 Results
15 Results