Publications

Results 1–25 of 30
Skip to search filters

Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations

IEEE Transactions on Visualization and Computer Graphics

Matzen, Laura E.; Haass, Michael J.; Divis, Kristin; Wang, Zhiyuan; Wilson, Andrew T.

Evaluating the effectiveness of data visualizations is a challenging undertaking and often relies on one-off studies that test a visualization in the context of one specific task. Researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles that could be applied to assessing the effectiveness of data visualizations in a more rapid and generalizable manner. One possibility for such a tool is a model of visual saliency for data visualizations. Visual saliency models are typically based on the properties of the human visual cortex and predict which areas of a scene have visual features (e.g. color, luminance, edges) that are likely to draw a viewer's attention. While these models can accurately predict where viewers will look in a natural scene, they typically do not perform well for abstract data visualizations. In this paper, we discuss the reasons for the poor performance of existing saliency models when applied to data visualizations. We introduce the Data Visualization Saliency (DVS) model, a saliency model tailored to address some of these weaknesses, and we test the performance of the DVS model and existing saliency models by comparing the saliency maps produced by the models to eye tracking data obtained from human viewers. Finally, we describe how modified saliency models could be used as general tools for assessing the effectiveness of visualizations, including the strengths and weaknesses of this approach.

More Details

Modeling human comprehension of data visualizations

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Haass, Michael J.; Wilson, Andrew T.; Matzen, Laura E.; Divis, Kristin

A critical challenge in data science is conveying the meaning of data to human decision makers. While working with visualizations, decision makers are engaged in a visual search for information to support their reasoning process. As sensors proliferate and high performance computing becomes increasingly accessible, the volume of data decision makers must contend with is growing continuously and driving the need for more efficient and effective data visualizations. Consequently, researchers across the fields of data science, visualization, and human-computer interaction are calling for foundational tools and principles to assess the effectiveness of data visualizations. In this paper, we compare the performance of three different saliency models across a common set of data visualizations. This comparison establishes a performance baseline for assessment of new data visualization saliency models.

More Details

Exploratory analysis of visual search data

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Stracuzzi, David J.; Speed, Ann S.; Silva, Austin R.; Haass, Michael J.; Trumbo, Derek T.

Visual search data describe people’s performance on the common perceptual problem of identifying target objects in a complex scene. Technological advances in areas such as eye tracking now provide researchers with a wealth of data not previously available. The goal of this work is to support researchers in analyzing this complex and multimodal data and in developing new insights into visual search techniques. We discuss several methods drawn from the statistics and machine learning literature for integrating visual search data derived from multiple sources and performing exploratory data analysis. We ground our discussion in a specific task performed by officers at the Transportation Security Administration and consider the applicability, likely issues, and possible adaptations of several candidate analysis methods.

More Details

Through a scanner quickly: Elicitation of P3 in transportation security officers following rapid image presentation and categorization

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Trumbo, Michael C.; Matzen, Laura E.; Silva, Austin R.; Haass, Michael J.; Divis, Kristin; Speed, Ann S.

Numerous domains, ranging from medical diagnostics to intelligence analysis, involve visual search tasks in which people must find and identify specific items within large sets of imagery. These tasks rely heavily on human judgment, making fully automated systems infeasible in many cases. Researchers have investigated methods for combining human judgment with computational processing to increase the speed at which humans can triage large image sets. One such method is rapid serial visual presentation (RSVP), in which images are presented in rapid succession to a human viewer. While viewing the images and looking for targets of interest, the participant’s brain activity is recorded using electroencephalography (EEG). The EEG signals can be time-locked to the presentation of each image, producing event-related potentials (ERPs) that provide information about the brain’s response to those stimuli. The participants’ judgments about whether or not each set of images contained a target and the ERPs elicited by target and non-target images are used to identify subsets of images that merit close expert scrutiny [1]. Although the RSVP/EEG paradigm holds promise for helping professional visual searchers to triage imagery rapidly, it may be limited by the nature of the target items. Targets that do not vary a great deal in appearance are likely to elicit useable ERPs, but more variable targets may not. In the present study, we sought to extend the RSVP/EEG paradigm to the domain of aviation security screening, and in doing so to explore the limitations of the technique for different types of targets. Professional Transportation Security Officers (TSOs) viewed bag X-rays that were presented using an RSVP paradigm. The TSOs viewed bursts of images containing 50 segments of bag X-rays that were presented for 100 ms each. Following each burst of images, the TSOs indicated whether or not they thought there was a threat item in any of the images in that set. EEG was recorded during each burst of images and ERPs were calculated by time-locking the EEG signal to the presentation of images containing threats and matched images that were identical except for the presence of the threat item. Half of the threat items had a prototypical appearance and half did not. We found that the bag images containing threat items with a prototypical appearance reliably elicited a P300 ERP component, while those without a prototypical appearance did not. These findings have implications for the application of the RSVP/EEG technique to real-world visual search domains.

More Details

Situation Awareness and Automation in the Electric Grid Control Room

Procedia Manufacturing

Adams, Susan S.; Cole, Kerstan S.; Haass, Michael J.; Warrender, Christina E.; Jeffers, Robert F.; Burnham, Laurie B.; Forsythe, James C.

Electric distribution utilities, the companies that feed electricity to end users, are overseeing a technological transformation of their networks, installing sensors and other automated equipment, that are fundamentally changing the way the grid operates. These grid modernization efforts will allow utilities to incorporate some of the newer technology available to the home user – such as solar panels and electric cars – which will result in a bi-directional flow of energy and information. How will this new flow of information affect control room operations? How will the increased automation associated with smart grid technologies influence control room operators’ decisions? And how will changes in control room operations and operator decision making impact grid resilience? These questions have not been thoroughly studied, despite the enormous changes that are taking place. In this study, which involved collaborating with utility companies in the state of Vermont, the authors proposed to advance the science of control-room decision making by understanding the impact of distribution grid modernization on operator performance. Distribution control room operators were interviewed to understand daily tasks and decisions and to gain an understanding of how these impending changes will impact control room operations. Situation awareness was found to be a major contributor to successful control room operations. However, the impact of growing levels of automation due to smart grid technology on operators’ situation awareness is not well understood. Future work includes performing a naturalistic field study in which operator situation awareness will be measured in real-time during normal operations and correlated with the technological changes that are underway. The results of this future study will inform tools and strategies that will help system operators adapt to a changing grid, respond to critical incidents and maintain critical performance skills.

More Details

Toward an Objective Measure of Automation for the Electric Grid

Procedia Manufacturing

Haass, Michael J.; Warrender, Christina E.; Burnham, Laurie B.; Jeffers, Robert F.; Adams, Susan S.; Cole, Kerstan S.; Forsythe, James C.

The impact of automation on human performance has been studied by human factors researchers for over 35 years. One unresolved facet of this research is measurement of the level of automation across and within engineered systems. Repeatable methods of observing, measuring and documenting the level of automation are critical to the creation and validation of generalized theories of automation's impact on the reliability and resilience of human-in-the-loop systems. Numerous qualitative scales for measuring automation have been proposed. However these methods require subjective assessments based on the researcher's knowledge and experience, or through expert knowledge elicitation involving highly experienced individuals from each work domain. More recently, quantitative scales have been proposed, but have yet to be widely adopted, likely due to the difficulty associated with obtaining a sufficient number of empirical measurements from each system component. Our research suggests the need for a quantitative method that enables rapid measurement of a system's level of automation, is applicable across domains, and can be used by human factors practitioners in field studies or by system engineers as part of their technical planning processes. In this paper we present our research methodology and early research results from studies of electricity grid distribution control rooms. Using a system analysis approach based on quantitative measures of level of automation, we provide an illustrative analysis of select grid modernization efforts. This measure of the level of automation can be displayed as either a static, historical view of the system's automation dynamics (the dynamic interplay between human and automation required to maintain system performance) or it can be incorporated into real-time visualization systems already present in control rooms.

More Details
Results 1–25 of 30
Results 1–25 of 30