Thorpe, J., Musuvathy, S., Verzi, S.J., Vugrin, E., Dykstra, M., Sahakian, M., & Sahakian, M. (2021). GAMVT: A Generative Algorithm for MultiVariate Timeseries Data [Conference Paper]. https://www.osti.gov/biblio/1886761
Publications
Search results
Jump to search filtersRodriguez, J., Parker, R., Laird, C., Nicholson, B.L., Siirola, J.D., Bynum, M., & Bynum, M. (2021). Scalable Parallel Nonlinear Optimization with PyNumero and Parapint. Optimization Online Repository. https://www.osti.gov/biblio/1834337
Rackers, J.A., Lee, A., & Lee, A. (2021). Machine learning to build quantum-accurate models for biological macromolecules [Presentation]. https://www.osti.gov/biblio/1886174
Oldfield, R., Plimpton, S.J., Bachman, W.B., Poliakoff, D., Sornborger, A., & Sornborger, A. (2021). Memo regarding the Final Review of FY21 ASC L2 Milestone 7840: Neural Mini-Apps for Future Heterogeneous HPC Systems. https://doi.org/10.2172/1825628
Abdelfattah, A., Anzt, H., Ayala, A., Boman, E.G., Carson, E.C., Cayrols, S., Cojean, T., Dongarra, J.J., Falgout, R., Gates, M., G, R., Higham, N.J., Kruger, S.E., Li, S., Lindquist, N., Liu, Y., Loe, J.A., Nayak, P., Osei-Kuffuor, D., … Yang, U.M. (2021). Advances in Mixed Precision Algorithms: 2021 Edition. https://doi.org/10.2172/1814447
Gorodetsky, A.A., Jakeman, J.D., Geraci, G., & Geraci, G. (2021). MFNets: data efficient all-at-once learning of multifidelity surrogates as directed networks of information sources. Computational Mechanics, 68(4), pp. 741-758. https://doi.org/10.1007/s00466-021-02042-0
Swiler, L.P., Basurto, E., Brooks, D.M., Eckert, A., Leone, R.C., Mariner, P.E., Portone, T., Bachman, W.B., Stein, E., & Stein, E. (2021). Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2021). https://doi.org/10.2172/1855018
Merrell, D.P., Robinson, A.C., Sanchez, J.J., & Sanchez, J.J. (2021). Statistical Distributions for Mesh Independent Solutions in ALEGRA. https://doi.org/10.2172/1813648
Tarman, T.D., Swiler, L.P., Vugrin, E., Rollins, T., Cruz, G.J., Huang, H., Sahu, A., Wlazlo, P., Goulart, A., Davis, K., & Davis, K. (2021). Comparing reproduced cyber experimentation studies across different emulation testbeds [Conference Presenation]. ACM International Conference Proceeding Series. https://doi.org/10.2172/1881645
Swiler, L.P., Brooks, D.M., Stein, E., Rohlig, K., Plischke, E., Becker, D., Spiessl, S.M., Koskinen, L., Govaerts, J., Svitelman, V., Elena, S., & Elena, S. (2021). Metamodelling sensitivity approaches versus regression and graphical methods on the basis of Geologic Cases: An International Collaboration [Conference Presenation]. https://doi.org/10.2172/1884666
Rackers, J.A. (2021). What is Machine Learning good for anyway? [Presentation]. https://www.osti.gov/biblio/1881684
Tranchida, J. (2021). Magneto-elastic predictions with LAMMPS and the SPIN package [Conference Presenation]. https://doi.org/10.2172/1884091
Ibanez-Granados, D.A. (2021). Better Package Management [Presentation]. https://www.osti.gov/biblio/1883461
Acer, S., Boman, E.G., Glusa, C., Rajamanickam, S., & Rajamanickam, S. (2021). Sphynx: a parallel multi-GPU graph partitioner [Conference Presenation]. https://doi.org/10.2172/1882077
Cyr, E.C., Guenther, S., Ruthotto, L., Schroder, J.B., Gauger, N.R., Moon, G., Patel, R., & Patel, R. (2021). A Layer-Parallel Approach for Training Deep Neural Networks [Conference Presenation]. https://doi.org/10.2172/1881678
Moore, S.G. (2021). The State of the LAMMPS KOKKOS Package [Conference Presenation]. https://doi.org/10.2172/1888676
Raybourn, E.M., Watson, G., Gonsiorowski, E., Milewicz, R.M., Rogers, D.M., Sims, B., Willenbring, J.M., & Willenbring, J.M. (2021). Automating Software Productivity Planning: Lightweight Tools for Upgrading Team Practices [Conference Proceeding]. https://www.osti.gov/biblio/1884442
Harvey-Thompson, A.J., Geissel, M., Crabtree, J.A., Weis, M.R., Gomez, M.R., Fein, J.R., Ampleford, D.J., Awe, T.J., Chandler, G.A., Galloway, B.R., Hansen, S.B., Hanson, J., Harding, E.C., Jennings, C.A., Kimmel, M., Knapp, P.F., Lamppa, D.C., Bachman, W.B., Mangan, M.A., … Smith, G.E. (2021). Increased preheat energy to MagLIF targets with cryogenic cooling [Conference Presenation]. https://doi.org/10.2172/1888953
Voth, T.E., Granzow, B.N., Stagg, A.K., Bond, S.D., Hamlin, N.D., Martin, M.R., Shulenburger, L., & Shulenburger, L. (2021). FLEXO: Development of a Portably Performant AMR Code for XMHD [Conference Presenation]. https://doi.org/10.2172/1881674
Eldred, C., Gay-Balmaz, F., & Gay-Balmaz, F. (2021). Thermodynamically consistent semi-compressible fluids: A variational perspective. Journal of Physics A: Mathematical and Theoretical, 54(34). https://doi.org/10.1088/1751-8121/ac1384
Jacobson, N.T., Albrecht, D., & Albrecht, D. (2021). NoMoPy: Noise Modeling in Python [Conference Presenation]. https://doi.org/10.2172/1882098
Hartland, T., Perego, M., Petra, N., & Petra, N. (2021). Inversion of the Humboldt Glacier Basal Friction Coefficient Field in an Uncertain Ice Sheet Model [Presentation]. https://www.osti.gov/biblio/1884051
Plimpton, S.J. (2021). How to modify LAMMPS [Conference Presenation]. https://doi.org/10.2172/1888427
Raybourn, E.M., Milewicz, R.M., Rogers, D.M., Sims, B., Watson, G., Gonsiorowski, E., Willenbring, J.M., & Willenbring, J.M. (2021). A Data-driven Approach to Rethinking Open Source Software Organizations as a Team of Teams [Conference Proceeding]. https://www.osti.gov/biblio/1881691
Jacobson, N.T., Young, S.M., & Young, S.M. (2021). Sandia/Princeton collaboration: Multivalley effective mass theory modeling of Princeton SiGe devices [Conference Presenation]. https://doi.org/10.2172/1882099
Loe, J.A. (2021). An Introduction to Trilinos [Presentation]. https://www.osti.gov/biblio/1884905
Poliakoff, D. (2021). Kokkos Tools [Presentation]. https://www.osti.gov/biblio/1888126
Rackers, J.A. (2021). What can machine learning teach us about the limits of electron correlation? [Conference Presenation]. https://doi.org/10.2172/1884653
Lewis, C., Phipps, E.T., & Phipps, E.T. (2021). Low-Communication Asynchronous Distributed Generalized Canonical Polyadic Tensor Decomposition [Conference Paper]. https://doi.org/10.1109/HPEC49654.2021.9622844
Silling, S.A. (2021). Calibrating a Peridynamic Material Model with Molecular Dynamics [Conference Presenation]. https://doi.org/10.2172/1883458
Magann, A.B. (2021). Quantum computing: where we are now, & where we're headed [Presentation]. https://www.osti.gov/biblio/1884177
Sahakian, M., Musuvathy, S., Thorpe, J., Verzi, S.J., Vugrin, E., Dykstra, M., & Dykstra, M. (2021). Threat data generation for space systems [Conference Presenation]. Proceedings - 2021 IEEE Space Computing Conference, SCC 2021. https://doi.org/10.2172/1873278
Gastelum, Z.N., Shead, T.M., Rushdi, A., & Rushdi, A. (2021). A Safeguards-Informed Image Dataset for Computer Vision R&D [Conference Presenation]. https://doi.org/10.2172/1888462
Wood, M.A. (2021). LAMMPS Users Meeting 2021: Visualization Tutorial [Conference Presenation]. https://doi.org/10.2172/1891069
Magann, A.B. (2021). Designing quantum controls efficiently [Presentation]. https://www.osti.gov/biblio/1890882
Shead, T.M., Gastelum, Z.N., Rushdi, A., & Rushdi, A. (2021). Synthetic Images for Machine Learning [Presentation]. https://www.osti.gov/biblio/1881667
Bachman, W.B., Schleife, A., Kononov, A., Hansen, S.B., Baczewski, A.D., & Baczewski, A.D. (2021). Optical Properties of Be at High Temperatures from First Principles [Presentation]. https://www.osti.gov/biblio/1884067
Wood, M.A., Thompson, A.P., Cusentino, M.A., Montes de Zapiain, D., Oleynik, I., & Oleynik, I. (2021). Interatomic Potentials for Materials Science and Beyond; Advances in Machine Learned Spectral Neighborhood Analysis Potentials [Conference Presenation]. https://doi.org/10.2172/1883516
Xiao, T.P., Feinberg, B., Bennett, C., Agarwal, S., Marinella, M., & Marinella, M. (2021). Designing Accurate and Robust Analog Accelerators for Neural Networks and Linear Algebra [Presentation]. https://www.osti.gov/biblio/1882297
Tranchida, J. (2021). Large-scale theroretical predictions of pressure and temperature ramps in iron [Conference Presenation]. https://doi.org/10.2172/1888143
Swan, M.S., Sirajuddin, D., Cartwright, K.L., Moore, C.H., & Moore, C.H. (2021). A User Perspective on HPC Challenges and Diagnostics [Presentation]. https://www.osti.gov/biblio/1890903
Szalek, N., Gardelle, J., Grua, P., Hebert, D., Moore, C.H., Medina, B., Swan, M.S., Cartwright, K.L., & Cartwright, K.L. (2021). EXPERIMENTAL STUDIES OF ELECTRON BEAM PROPAGATION IN ARGON [Conference Presenation]. https://doi.org/10.2172/1883493
Loe, J.A. (2021). Using Multiple Precisions in the GMRES Linear Solver [Presentation]. https://www.osti.gov/biblio/1884904
Hart, J.L., van Bloemen Waanders, B.G., Saibaba, A.K., & Saibaba, A.K. (2021). Randomized algorithms for generalized singular value decomposition with application to sensitivity analysis. Numerical Linear Algebra with Applications, 28(4). https://doi.org/10.1002/nla.2364
D'Elia, M., Silling, S.A., Yu, Y., You, H., & You, H. (2021). A data-driven peridynamic continuum model for upscaling molecular dynamics. https://doi.org/10.2172/1821529
Moore, S.G. (2021). Overview of Molecular Dynamics [Conference Presenation]. https://doi.org/10.2172/1882348
Cusentino, M.A., Wood, M.A., Thompson, A.P., & Thompson, A.P. (2021). Development of SNAP Potentials for Fusion Reactor Materials [Conference Presenation]. https://doi.org/10.2172/1882069
Geronimo Anderson, S.I., Teranishi, K., Dunlavy, D.M., Choi, J., & Choi, J. (2021). Performance-Portable Sparse Tensor Decomposition Kernels on Emerging Parallel Architectures [Conference Paper]. https://www.osti.gov/biblio/1884665
di Matteo, O., Gamble, J., Granade, C., Rudinger, K.M., Wiebe, N., & Wiebe, N. (2021). Operational Quantum Tomography [Conference Presenation]. https://doi.org/10.2172/1882132
Ahmed, H., Lofstead, G.F., & Lofstead, G.F. (2021). Quantifying the Crisis in Reproducible Machine Learning [Conference Poster]. https://doi.org/10.2172/1883039
Rackers, J.A. (2021). What can you do with a polarizable force field? [Conference Presenation]. https://doi.org/10.2172/1884423
Berry, J., Phillips, C.A., Porter, A., & Porter, A. (2021). Maintaining Connected Components in Infinite Graph Streams [Presentation]. https://doi.org/10.1145/2501221.2501234
Trask, N.A. (2021). A data-driven exterior calculus for model discovery [Conference Presenation]. https://doi.org/10.2172/1882073
Huang, A., Gao, X., Reza, S., Trask, N.A., Wilcox, I.Z., Diaz, C.P., Patel, R., & Patel, R. (2021). Machine learning surrogates of high-fidelity electrical models [Presentation]. https://www.osti.gov/biblio/1882298
Sahakian, M., Musuvathy, S., Thorpe, J., Verzi, S.J., Vugrin, E., Dykstra, M., & Dykstra, M. (2021). Threat data generation for space systems [Conference Paper]. Proceedings - 2021 IEEE Space Computing Conference, SCC 2021. https://doi.org/10.1109/SCC49971.2021.00018
Laros, J.H., Hammond, S., Bachman, W.B., & Bachman, W.B. (2021). Vanguard-II Application Evaluation Thrust [Presentation]. https://www.osti.gov/biblio/1884443
Smith, C., Albash, T., Campbell, Q.T., Baczewski, A.D., & Baczewski, A.D. (2021). Neural Network Quantum Simulation [Conference Presenation]. https://doi.org/10.2172/1889560
Abubaker, N., Acer, S., Aykanat, C., & Aykanat, C. (2021). True Load Balancing for Matricized Tensor Times Khatri-Rao Product. IEEE Transactions on Parallel and Distributed Systems, 32(8), pp. 1974-1986. https://doi.org/10.1109/tpds.2021.3053836
Gao, X., Mendez Granado, J.P., Lu, T., Anderson, E.M., de Campbell, A., Ivie, J.A., Schmucker, S.W., Grine, A., Lu, P., Tracy, L.A., Arghavani, R., Misra, S., & Misra, S. (2021). Modeling and Assessment of Atomic Precision Advanced Manufacturing (APAM) Enabled Vertical Tunneling Field Effect Transistor [Conference Paper]. https://doi.org/10.1109/SISPAD54002.2021.9592578
Aitken, R., Nakahira, Y., Strachan, J.P., Bresniker, K., Young, I., Li, Z., Klebanoff, L.E., Burchard, C., Kumar, S., Marinella, M., Severa, W., Talin, A.A., Vineyard, C.M., Mailhiot, C., Dick, R., Lu, W., Mogill, J., & Mogill, J. (2021). Energy Efficient Computing R&D Roadmap Outline for Automated Vehicles. https://doi.org/10.2172/1821804
Chance, F.S. (2021). Lessons from α Dragon Fly's Brain: Evolution Built a Small, Fast, Efficient Neural Network in a Dragonfly. Why Not Copy It for Missile Defense?. IEEE Spectrum, 58(8), pp. 28-33. https://doi.org/10.1109/mspec.2021.9502906
Nichol, J.J. (2021). Causal Inference and Causal Discovery [Presentation]. https://www.osti.gov/biblio/1882126
Rackers, J.A. (2021). What can machine learning and the Hellmann-Feynman Theorem teach us about the limits of electron correlation? [Conference Presenation]. https://doi.org/10.2172/1884141
Leonard, F., Backer, A.S., Fuller, E.J., Teeter, C.M., Vineyard, C.M., & Vineyard, C.M. (2021). Co-Design of Free-Space Metasurface Optical Neuromorphic Classifiers for High Performance. ACS Photonics, 8(7), pp. 2103-2111. https://doi.org/10.1021/acsphotonics.1c00526
Trott, C.R., Lebrun-Grandie, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N.D., Gayatri, R., Harvey, E.C., Hollman, D.S., Ibanez-Granados, D.A., Liber, N., Madsen, J., Miles, J.S., Poliakoff, D., Powell, A.J., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., Wilke, J., & Wilke, J. (2021). Kokkos 3: Programming Model Extensions for the Exascale Era. IEEE Transactions on Parallel and Distributed Systems, 33(4), pp. 805-817. https://doi.org/10.1109/TPDS.2021.3097283
Jakeman, J.D., Kouri, D.P., Huerta, J.G., & Huerta, J.G. (2021). Surrogate Modeling For Efficiently Accurately and Conservatively Estimating Measures of Risk. https://doi.org/10.2172/1807455
Friedman, S., Jakeman, J.D., Eldred, M., Tamellini, L., Gorodestky, A.A., Allaire, D., & Allaire, D. (2021). Adaptive resource allocation for surrogate modeling of systems comprised of multiple disciplines with varying fidelity. https://doi.org/10.2172/1807453
Rempe, S.B., Jing, Z., Rackers, J.A., Pratt, L.R., Liu, C., Ren, P., & Ren, P. (2021). Thermodynamics of ion binding and occupancy in potassium channels. Chemical Science, 12(25), pp. 8920-8930. https://doi.org/10.1039/d1sc01887f
Aimone, J.B., Ho, Y., Parekh, O., Phillips, C.A., Pinar, A., Severa, W., Wang, Y., & Wang, Y. (2021). Provable advantages for graph algorithms in spiking neural networks [Conference Paper]. Annual ACM Symposium on Parallelism in Algorithms and Architectures. https://doi.org/10.1145/3409964.3461813
dos Santos, G., Meyer, R., Aparicio, R., Tranchida, J., Bringa, E.M., Urbassek, H.M., & Urbassek, H.M. (2021). Spin-lattice dynamics of surface vs core magnetization in Fe nanoparticles. Applied Physics Letters, 119(1). https://doi.org/10.1063/5.0055606
Hart, W.E., Laird, C., Rodriguez, J.S., Siirola, J.D., Nicholson, B.L., & Nicholson, B.L. (2021). Rethinking the C++ / Python Boundary in Modeling and Optimization Tools [Presentation]. https://www.osti.gov/biblio/1882366
Frink, C. (2021). Benchmarking Quantum Algorithms with Neural Networks [Presentation]. https://www.osti.gov/biblio/1884402
Miller, N., Hughes, C., & Hughes, C. (2021). Comparing Intel Compilers Poster [Presentation]. https://www.osti.gov/biblio/1882504
Torchinsky, J., Taylor, M.A., & Taylor, M.A. (2021). Improved vertical remapping accuracy [Presentation]. https://www.osti.gov/biblio/1883500
Kouri, D.P. (2021). An Inexact Trust-Region Newton Method for Large-Scale Convex-Constrained Optimization [Conference Presenation]. https://doi.org/10.2172/1878281
Lennon, K., Rajamanickam, S., & Rajamanickam, S. (2021). Learning Transferable DFT Neural Network Surrogates [Presentation]. https://www.osti.gov/biblio/1884431
Younge, A.J., Fuller, T.J., Bachman, W.B., Bova, S.W., & Bova, S.W. (2021). A Case Study in Using Containers to Build and Distribute HPC Applications: ALEGRA [Conference Presenation]. https://doi.org/10.2172/1876620
Laird, C., Nicholson, B.L., Rodriguez, J.S., & Rodriguez, J.S. (2021). Parallel strategies for DAE optimization with direct Schur-complement decomposition [Conference Poster]. https://www.osti.gov/biblio/1883541
Moore, N. (2021). Learning Algebraic Multigrid Prolongation with Residual Graph Neural Networks [Presentation]. https://www.osti.gov/biblio/1877980
Lofstead, G.F. (2021). Simulating the Impossible via Breaking Assumptions [Conference Presenation]. https://doi.org/10.2172/1876622
Gilman, K., Phipps, E.T., Kolla, H., & Kolla, H. (2021). Split Bregman optimizer for online generalized CP tensor decomposition [Presentation]. https://www.osti.gov/biblio/1881725
McCrary, T., Devine, K., & Devine, K. (2021). Integrating PGAS and MPI-Based Graph Analysis [Presentation]. https://www.osti.gov/biblio/1881669
Worley, A., Schafer, D., Bangalore, P.V., Dosanjh, M.G.F., Grant, R., Skjellum, A., Ghafoor, G., & Ghafoor, G. (2021). Design of a Portable Implementation of Partitioned Point-to-Point Communication Primitives [Conference Paper]. https://doi.org/10.1145/3458744.3474046
Bynum, M., Rodriguez, S., Laird, C., Nicholson, B.L., Jalving, J.H., Siirola, J.D., Ridzal, D., & Ridzal, D. (2021). Scalable Parallel Nonlinear Optimization with PyNumero and Parapint [Conference Presenation]. https://doi.org/10.2172/1884206
Jakeman, J.D., Eldred, M., Geraci, G., Portone, T., Rushdi, A., Seidl, D.T., Smith, T.M., & Smith, T.M. (2021). Multi-fidelity Machine Learning [Conference Presenation]. https://doi.org/10.2172/1876608
Nichol, J.J., Peterson, M.G., Fricke, M., & Fricke, M. (2021). Learning Why: Data-Driven Causal Evaluations of Climate Models [Conference Proceeding]. https://www.osti.gov/biblio/1888471
Hardesty, S., Antil, H., Kouri, D.P., Ridzal, D., & Ridzal, D. (2021). The Strip Method for Shape Derivatives [Conference Presenation]. https://doi.org/10.2172/1876615
Cyr, E.C. (2021). Perfection is the Enemy of Fast: The Case for Mathematically Induced Parallelism [Presentation]. https://www.osti.gov/biblio/1883495
Portone, T., Bachman, W.B., Dandekar, R., Rackauckas, C., & Rackauckas, C. (2021). Learning Missing Mechanisms in a Dynamical System from a Subset of State Variable Observations [Conference Presenation]. https://doi.org/10.2172/1889367
Hu, J.J., Glusa, C., & Glusa, C. (2021). Recent Advances in Maxwell Solvers for PIC Simulations Across Architectures [Conference Presenation]. https://doi.org/10.2172/1888437
Logan, L.M., Lofstead, G.F., & Lofstead, G.F. (2021). pMEMCPY: an efficient I/O library for PMEM [Conference Poster]. https://doi.org/10.2172/1888709
Laird, C., Watson, J., Hart, W.E., Siirola, J.D., Nicholson, B.L., & Nicholson, B.L. (2021). Pyomo Tutorial [Presentation]. https://www.osti.gov/biblio/1882354
McQuarrie, S., van Bloemen Waanders, B.G., & van Bloemen Waanders, B.G. (2021). Goal-oriented data-driven reduced-order modeling guided by hyper-differential sensitivity analysis [Presentation]. https://www.osti.gov/biblio/1884436
Mayer, C.D. (2021). Use My Data, But Don't Make Me Share It: Hybrid Secure MultiParty Computation for Privacy-Preserving Machine Learning [Presentation]. https://www.osti.gov/biblio/1882290
Loe, J.A., Glusa, C., Yamazaki, I., Boman, E.G., Rajamanickam, S., & Rajamanickam, S. (2021). Properties of GMRES with Iterative Refinement on GPUs [Conference Presenation]. https://doi.org/10.2172/1884157
Maniaci, D.C., Naughton, J., Geraci, G., King, R., & King, R. (2021). Verification, Validation & Uncertainty Quantification [Presentation]. https://www.osti.gov/biblio/1883505
Low, M.R. (2021). Trajectory Anomaly Detection [Presentation]. https://www.osti.gov/biblio/1884130
Crockatt, M.M., Shadid, J.N., Conde, S., Pawlowski, R., Mabuza, S., & Mabuza, S. (2021). Development of an Algorithmic Framework for the Simulation of Partially-Ionized Multifluid Plasma Systems with Arbitrarily Many Species [Conference Presenation]. https://doi.org/10.2172/1884180
Crossno, P.J., Gittinger, J., Hunt, W.L., Letter, M., Martin, S., Sielicki, M., & Sielicki, M. (2021). Slycat? Ensemble Analytics [Presentation]. https://www.osti.gov/biblio/1882478
Milewicz, R.M., Pirkelbauer, P., Soundarajan, P., Ahmed, H., Skjellum, T., & Skjellum, T. (2021). Negative Perceptions About the Applicability of Source-to-Source Compilers in HPC: A Literature Review [Conference Presenation]. https://doi.org/10.2172/1884057