This paper describes a method for incorporating a diffusion field modeling oxygen usage and dispersion in a multi-scale model of Mycobacterium tuberculosis (Mtb) infection mediated granuloma formation. We implemented this method over a floating-point field to model oxygen dynamics in host tissue during chronic phase response and Mtb persistence. The method avoids the requirement of satisfying the Courant-Friedrichs-Lewy (CFL) condition, which is necessary in implementing the explicit version of the finite-difference method, but imposes an impractical bound on the time step. Instead, diffusion is modeled by a matrix-based, steady state approximate solution to the diffusion equation. Moreover, presented in figure 1 is the evolution of the diffusion profiles of a containment granuloma over time.
This report presents the test cases used to verify, validate and demonstrate the features and capabilities of the first release of the 3D Direct Simulation Monte Carlo (DSMC) code SPARTA (Stochastic Real Time Particle Analyzer). The test cases included in this report exercise the most critical capabilities of the code like the accurate representation of physical phenomena (molecular advection and collisions, energy conservation, etc.) and implementation of numerical methods (grid adaptation, load balancing, etc.). Several test cases of simple flow examples are shown to demonstrate that the code can reproduce phenomena predicted by analytical solutions and theory. A number of additional test cases are presented to illustrate the ability of SPARTA to model flow around complicated shapes. In these cases, the results are compared to other well-established codes or theoretical predictions. This compilation of test cases is not exhaustive, and it is anticipated that more cases will be added in the future.
We present a review and critique of several methods for the simulation of the dynamics of colloidal suspensions at the mesoscale. We focus particularly on simulation techniques for hydrodynamic interactions, including implicit solvents (Fast Lubrication Dynamics, an approximation to Stokesian Dynamics) and explicit/particle-based solvents (Multi-Particle Collision Dynamics and Dissipative Particle Dynamics). Several variants of each method are compared quantitatively for the canonical system of monodisperse hard spheres, with a particular focus on diffusion characteristics, as well as shear rheology and microstructure. In all cases, we attempt to match the relevant properties of a well-characterized solvent, which turns out to be challenging for the explicit solvent models. Reasonable quantitative agreement is observed among all methods, but overall the Fast Lubrication Dynamics technique shows the best accuracy and performance. We also devote significant discussion to the extension of these methods to more complex situations of interest in industrial applications, including models for non-Newtonian solvent rheology, non-spherical particles, drying and curing of solvent and flows in complex geometries. This work identifies research challenges and motivates future efforts to develop techniques for quantitative, predictive simulations of industrially relevant colloidal suspension processes.
Proc. of 2nd Int. Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications, BigMine 2013 - Held in Conj. with SIGKDD 2013 Conf.
We present an algorithm to maintain the connected components of a graph that arrives as an infinite stream of edges. We formalize the algorithm on X-stream, a new parallel theoretical computational model for infinite streams. Connectivity-related queries, including component spanning trees, are supported with some latency, returning the state of the graph at the time of the query. Because an infinite stream may eventually exceed the storage limits of any number of finite-memory processors, we assume an aging command or daemon where "uninteresting" edges are removed when the system nears capacity. Following an aging command the system will block queries until its data structures are repaired, but edges will continue to be accepted from the stream, never dropped. The algorithm will not fail unless a model-specific constant fraction of the aggregate memory across all processors is full. In normal operation, it will not fail unless aggregate memory is completely full. Unlike previous theoretical streaming models designed for finite graphs that assume a single shared memory machine or require arbitrary-size intemediate files, X-stream distributes a graph over a ring network of finite-memory processors. Though the model is synchronous and reminiscent of systolic algorithms, our implementation uses an asynchronous message-passing system. We argue the correctness of our X-stream connected components algorithm, and give preliminary experimental results on synthetic and real graph streams.