Publications

Results 151–163 of 163
Skip to search filters

A comparison of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned iterative methods

International Journal for Numerical Methods in Engineering

Arbenz, Peter; Hetmaniuk, Ulrich L.; Lehoucq, Richard B.; Tuminaro, Raymond S.

The goal of our paper is to compare a number of algorithms for computing a large number of eigenvectors of the generalized symmetric eigenvalue problem arising from a modal analysis of elastic structures. The shift-invert Lanczos algorithm has emerged as the workhorse for the solution of this generalized eigenvalue problem; however, a sparse direct factorization is required for the resulting set of linear equations. Instead, our paper considers the use of preconditioned iterative methods. We present a brief review of available preconditioned eigensolvers followed by a numerical comparison on three problems using a scalable algebraic multigrid (AMG) preconditioner. Copyright © 2005 John Wiley & Sons, Ltd.

More Details

Large-scale stabilized FE computational analysis of nonlinear steady state transport/reaction systems

Proposed for publication in Computer Methods in Applied Mechanics and Engineering.

Shadid, John N.; Salinger, Andrew G.; Pawlowski, Roger P.; Lin, Paul L.; Hennigan, Gary L.; Tuminaro, Raymond S.; Lehoucq, Richard B.

The solution of the governing steady transport equations for momentum, heat and mass transfer in fluids undergoing non-equilibrium chemical reactions can be extremely challenging. The difficulties arise from both the complexity of the nonlinear solution behavior as well as the nonlinear, coupled, non-symmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this paper, we briefly review progress on developing a stabilized finite element (FE) capability for numerical solution of these challenging problems. The discussion considers the stabilized FE formulation for the low Mach number Navier-Stokes equations with heat and mass transport with non-equilibrium chemical reactions, and the solution methods necessary for detailed analysis of these complex systems. The solution algorithms include robust nonlinear and linear solution schemes, parameter continuation methods, and linear stability analysis techniques. Our discussion considers computational efficiency, scalability, and some implementation issues of the solution methods. Computational results are presented for a CFD benchmark problem as well as for a number of large-scale, 2D and 3D, engineering transport/reaction applications.

More Details

Uniform accuracy of eigenpairs from a shift-invert Lanczos method

Proposed for publication in the SIAM Journal on Matrix Analysis and Applications Special Issue on Accurate Solution of Eigenvalue P.

Hetmaniuk, Ulrich L.; Lehoucq, Richard B.

This paper analyzes the accuracy of the shift-invert Lanczos iteration for computing eigenpairs of the symmetric definite generalized eigenvalue problem. We provide bounds for the accuracy of the eigenpairs produced by shift-invert Lanczos given a residual reduction. We discuss the implications of our analysis for practical shift-invert Lanczos iterations. When the generalized eigenvalue problem arises from a conforming finite element method, we also comment on the uniform accuracy of bounds (independent of the mesh size h).

More Details

Multilevel methods for eigenspace computations in structural dynamics

Lehoucq, Richard B.; Hetmaniuk, Ulrich L.; Hetmaniuk, Ulrich L.

Modal analysis of three-dimensional structures frequently involves finite element discretizations with millions of unknowns and requires computing hundreds or thousands of eigenpairs. In this presentation we review methods based on domain decomposition for such eigenspace computations in structural dynamics. We distinguish approaches that solve the eigenproblem algebraically (with minimal connections to the underlying partial differential equation) from approaches that tightly couple the eigensolver with the partial differential equation.

More Details

Large-scale stabilized FE computational analysis of nonlinear steady state transport/reaction systems

Proposed for publication in Computation Methods in Applied Mechanics and Engineering.

Shadid, John N.; Salinger, Andrew G.; Pawlowski, Roger P.; Lin, Paul L.; Hennigan, Gary L.; Tuminaro, Raymond S.; Lehoucq, Richard B.

The solution of the governing steady transport equations for momentum, heat and mass transfer in fluids undergoing non-equilibrium chemical reactions can be extremely challenging. The difficulties arise from both the complexity of the nonlinear solution behavior as well as the nonlinear, coupled, non-symmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this paper, we briefly review progress on developing a stabilized finite element ( FE) capability for numerical solution of these challenging problems. The discussion considers the stabilized FE formulation for the low Mach number Navier-Stokes equations with heat and mass transport with non-equilibrium chemical reactions, and the solution methods necessary for detailed analysis of these complex systems. The solution algorithms include robust nonlinear and linear solution schemes, parameter continuation methods, and linear stability analysis techniques. Our discussion considers computational efficiency, scalability, and some implementation issues of the solution methods. Computational results are presented for a CFD benchmark problem as well as for a number of large-scale, 2D and 3D, engineering transport/reaction applications.

More Details

A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators

Bochev, Pavel B.; Christon, Mark A.; Collis, Samuel S.; Lehoucq, Richard B.; Shadid, John N.; Slepoy, Alexander S.

Existing approaches in multiscale science and engineering have evolved from a range of ideas and solutions that are reflective of their original problem domains. As a result, research in multiscale science has followed widely diverse and disjoint paths, which presents a barrier to cross pollination of ideas and application of methods outside their application domains. The status of the research environment calls for an abstract mathematical framework that can provide a common language to formulate and analyze multiscale problems across a range of scientific and engineering disciplines. In such a framework, critical common issues arising in multiscale problems can be identified, explored and characterized in an abstract setting. This type of overarching approach would allow categorization and clarification of existing models and approximations in a landscape of seemingly disjoint, mutually exclusive and ad hoc methods. More importantly, such an approach can provide context for both the development of new techniques and their critical examination. As with any new mathematical framework, it is necessary to demonstrate its viability on problems of practical importance. At Sandia, lab-centric, prototype application problems in fluid mechanics, reacting flows, magnetohydrodynamics (MHD), shock hydrodynamics and materials science span an important subset of DOE Office of Science applications and form an ideal proving ground for new approaches in multiscale science.

More Details

An overview of Trilinos

Heroux, Michael A.; Kolda, Tamara G.; Long, Kevin R.; Hoekstra, Robert J.; Pawlowski, Roger P.; Phipps, Eric T.; Salinger, Andrew G.; Williams, Alan B.; Heroux, Michael A.; Hu, Jonathan J.; Lehoucq, Richard B.; Thornquist, Heidi K.; Tuminaro, Raymond S.; Willenbring, James M.; Bartlett, Roscoe B.; Howle, Victoria E.

The Trilinos Project is an effort to facilitate the design, development, integration and ongoing support of mathematical software libraries. In particular, our goal is to develop parallel solver algorithms and libraries within an object-oriented software framework for the solution of large-scale, complex multi-physics engineering and scientific applications. Our emphasis is on developing robust, scalable algorithms in a software framework, using abstract interfaces for flexible interoperability of components while providing a full-featured set of concrete classes that implement all abstract interfaces. Trilinos uses a two-level software structure designed around collections of packages. A Trilinos package is an integral unit usually developed by a small team of experts in a particular algorithms area such as algebraic preconditioners, nonlinear solvers, etc. Packages exist underneath the Trilinos top level, which provides a common look-and-feel, including configuration, documentation, licensing, and bug-tracking. Trilinos packages are primarily written in C++, but provide some C and Fortran user interface support. We provide an open architecture that allows easy integration with other solver packages and we deliver our software to the outside community via the Gnu Lesser General Public License (LGPL). This report provides an overview of Trilinos, discussing the objectives, history, current development and future plans of the project.

More Details

LOCA 1.0 Library of Continuation Algorithms: Theory and Implementation Manual

Salinger, Andrew G.; Pawlowski, Roger P.; Lehoucq, Richard B.; Romero, L.A.; Wilkes, Edward D.

LOCA, the Library of Continuation Algorithms, is a software library for performing stability analysis of large-scale applications. LOCA enables the tracking of solution branches as a function of a system parameter, the direct tracking of bifurcation points, and, when linked with the ARPACK library, a linear stability analysis capability. It is designed to be easy to implement around codes that already use Newton's method to converge to steady-state solutions. The algorithms are chosen to work for large problems, such as those that arise from discretizations of partial differential equations, and to run on distributed memory parallel machines. This manual presents LOCA's continuation and bifurcation analysis algorithms, and instructions on how to implement LOCA with an application code. The LOCA code is being made publicly available at www.cs.sandia.gov/loca.

More Details
Results 151–163 of 163
Results 151–163 of 163