Publications

Results 26–27 of 27

Search results

Jump to search filters

Computational methods for coupling microstructural and micromechanical materials response simulations

Holm, Elizabeth A.; Wellman, Gerald W.; Battaile, Corbett C.; Buchheit, Thomas E.; Fang, H.E.; Rintoul, Mark D.; Vedula, Venkata R.; Glass, Sarah J.; Knorovsky, Gerald A.; Neilsen, Michael K.

Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were applied to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.

More Details

A precise determination of the void percolation threshold for two distributions of overlapping spheres

Physical Review Letters

Rintoul, Mark D.

The void percolation threshold is calculated for a distribution of overlapping spheres with equal radii, and for a binary sized distribution of overlapping spheres, where half of the spheres have radii twice as large as the other half. Using systems much larger than previous work, the authors determine a much more precise value for the percolation thresholds and correlation length exponent. The values for the percolation thresholds are shown to be significantly different, in contrast with previous, less precise works that speculated that the threshold might be universal with respect to sphere size distribution.

More Details
Results 26–27 of 27
Results 26–27 of 27