Publications

Results 26–50 of 148

Search results

Jump to search filters

A comparison of power management mechanisms: P-States vs. node-level power cap control

Proceedings - 2018 IEEE 32nd International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2018

Pedretti, Kevin P.; Grant, Ryan E.; Laros, James H.; Levenhagen, Michael J.; Olivier, Stephen L.; Ward, Harry L.; Younge, Andrew J.

Large-scale HPC systems increasingly incorporate sophisticated power management control mechanisms. While these mechanisms are potentially useful for performing energy and/or power-aware job scheduling and resource management (EPA JSRM), greater understanding of their operation and performance impact on real-world applications is required before they can be applied effectively in practice. In this paper, we compare static p-state control to static node-level power cap control on a Cray XC system. Empirical experiments are performed to evaluate node-to-node performance and power usage variability for the two mechanisms. We find that static p-state control produces more predictable and higher performance characteristics than static node-level power cap control at a given power level. However, this performance benefit is at the cost of less predictable power usage. Static node-level power cap control produces predictable power usage but with more variable performance characteristics. Our results are not intended to show that one mechanism is better than the other. Rather, our results demonstrate that the mechanisms are complementary to one another and highlight their potential for combined use in achieving effective EPA JSRM solutions.

More Details

Evaluating energy and power profiling techniques for HPC workloads

2017 8th International Green and Sustainable Computing Conference, IGSC 2017

Grant, Ryan E.; Laros, James H.; Levenhagen, Michael J.; Olivier, Stephen L.; Pedretti, Kevin P.; Ward, Harry L.; Younge, Andrew J.

Advanced power measurement capabilities are becoming available on large scale High Performance Computing (HPC) deployments. There exist several approaches to providing power measurements today, primarily through in-band (e.g. RAPL) and out-of-band measurements (e.g. power meters). Both types of measurement can be augmented with application-level profiling, however it can be difficult to assess the type and detail of measurement needed to obtain insight from the application power profile. This paper presents a taxonomy for classifying power profiling techniques on modern HPC platforms. Three HPC mini-applications are analyzed across three production HPC systems to examine the level of detail, scope, and complexity of these power profiles. We demonstrate that a combination of out-of-band measurement with in-band application region profiling can provide an accurate, detailed view of power usage without introducing overhead. This work also provides a set of recommendations for how to best profile HPC workloads.

More Details

High Performance Computing - Power Application Programming Interface Specification Version 2.0

Laros, James H.; Grant, Ryan E.; Levenhagen, Michael J.; Olivier, Stephen L.; Pedretti, Kevin P.; Ward, Harry L.; Younge, Andrew J.

Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

More Details
Results 26–50 of 148
Results 26–50 of 148

Current Filters

Clear all