Publications

Results 26–46 of 46
Skip to search filters

Adversary phase change detection using S.O.M. and text data

Speed, Ann S.; Warrender, Christina E.

In this work, we developed a self-organizing map (SOM) technique for using web-based text analysis to forecast when a group is undergoing a phase change. By 'phase change', we mean that an organization has fundamentally shifted attitudes or behaviors. For instance, when ice melts into water, the characteristics of the substance change. A formerly peaceful group may suddenly adopt violence, or a violent organization may unexpectedly agree to a ceasefire. SOM techniques were used to analyze text obtained from organization postings on the world-wide web. Results suggest it may be possible to forecast phase changes, and determine if an example of writing can be attributed to a group of interest.

More Details

Adversary phase change detection using S.O.M. and text data

Speed, Ann S.; Warrender, Christina E.

In this work, we developed a self-organizing map (SOM) technique for using web-based text analysis to forecast when a group is undergoing a phase change. By 'phase change', we mean that an organization has fundamentally shifted attitudes or behaviors. For instance, when ice melts into water, the characteristics of the substance change. A formerly peaceful group may suddenly adopt violence, or a violent organization may unexpectedly agree to a ceasefire. SOM techniques were used to analyze text obtained from organization postings on the world-wide web. Results suggest it may be possible to forecast phase changes, and determine if an example of writing can be attributed to a group of interest.

More Details

A cognitive-consistency based model of population wide attitude change

Lakkaraju, Kiran L.; Speed, Ann S.

Attitudes play a significant role in determining how individuals process information and behave. In this paper we have developed a new computational model of population wide attitude change that captures the social level: how individuals interact and communicate information, and the cognitive level: how attitudes and concept interact with each other. The model captures the cognitive aspect by representing each individuals as a parallel constraint satisfaction network. The dynamics of this model are explored through a simple attitude change experiment where we vary the social network and distribution of attitudes in a population.

More Details

Adversary phase change detection using SOMs and text data

Doser, Adele D.; Speed, Ann S.; Warrender, Christina E.

In this work, we developed a self-organizing map (SOM) technique for using web-based text analysis to forecast when a group is undergoing a phase change. By 'phase change', we mean that an organization has fundamentally shifted attitudes or behaviors. For instance, when ice melts into water, the characteristics of the substance change. A formerly peaceful group may suddenly adopt violence, or a violent organization may unexpectedly agree to a ceasefire. SOM techniques were used to analyze text obtained from organization postings on the world-wide web. Results suggest it may be possible to forecast phase changes, and determine if an example of writing can be attributed to a group of interest.

More Details

Final Report on LDRD project 130784 : functional brain imaging by tunable multi-spectral Event-Related Optical Signal (EROS)

Hsu, Alan Y.; Speed, Ann S.

Functional brain imaging is of great interest for understanding correlations between specific cognitive processes and underlying neural activity. This understanding can provide the foundation for developing enhanced human-machine interfaces, decision aides, and enhanced cognition at the physiological level. The functional near infrared spectroscopy (fNIRS) based event-related optical signal (EROS) technique can provide direct, high-fidelity measures of temporal and spatial characteristics of neural networks underlying cognitive behavior. However, current EROS systems are hampered by poor signal-to-noise-ratio (SNR) and depth of measure, limiting areas of the brain and associated cognitive processes that can be investigated. We propose to investigate a flexible, tunable, multi-spectral fNIRS EROS system which will provide up to 10x greater SNR as well as improved spatial and temporal resolution through significant improvements in electronics, optoelectronics and optics, as well as contribute to the physiological foundation of higher-order cognitive processes and provide the technical foundation for miniaturized portable neuroimaging systems.

More Details

Using adversary text to detect adversary phase changes

Doser, Adele D.; Speed, Ann S.; Warrender, Christina E.

The purpose of this work was to help develop a research roadmap and small proof ofconcept for addressing key problems and gaps from the perspective of using text analysis methods as a primary tool for detecting when a group is undergoing a phase change. Self- rganizing map (SOM) techniques were used to analyze text data obtained from the tworld-wide web. Statistical studies indicate that it may be possible to predict phase changes, as well as detect whether or not an example of writing can be attributed to a group of interest.

More Details

Dynamic context discrimination : psychological evidence for the Sandia Cognitive Framework

Speed, Ann S.

Human behavior is a function of an iterative interaction between the stimulus environment and past experience. It is not simply a matter of the current stimulus environment activating the appropriate experience or rule from memory (e.g., if it is dark and I hear a strange noise outside, then I turn on the outside lights and investigate). Rather, it is a dynamic process that takes into account not only things one would generally do in a given situation, but things that have recently become known (e.g., there have recently been coyotes seen in the area and one is known to be rabid), as well as other immediate environmental characteristics (e.g., it is snowing outside, I know my dog is outside, I know the police are already outside, etc.). All of these factors combine to inform me of the most appropriate behavior for the situation. If it were the case that humans had a rule for every possible contingency, the amount of storage that would be required to enable us to fluidly deal with most situations we encounter would rapidly become biologically untenable. We can all deal with contingencies like the one above with fairly little effort, but if it isn't based on rules, what is it based on? The assertion of the Cognitive Systems program at Sandia for the past 5 years is that at the heart of this ability to effectively navigate the world is an ability to discriminate between different contexts (i.e., Dynamic Context Discrimination, or DCD). While this assertion in and of itself might not seem earthshaking, it is compelling that this ability and its components show up in a wide variety of paradigms across different subdisciplines in psychology. We begin by outlining, at a high functional level, the basic ideas of DCD. We then provide evidence from several different literatures and paradigms that support our assertion that DCD is a core aspect of cognitive functioning. Finally, we discuss DCD and the computational model that we have developed as an instantiation of DCD in more detail. Before commencing with our overview of DCD, we should note that DCD is not necessarily a theory in the classic sense. Rather, it is a description of cognitive functioning that seeks to unify highly similar findings across a wide variety of literatures. Further, we believe that such convergence warrants a central place in efforts to computationally emulate human cognition. That is, DCD is a general principle of cognition. It is also important to note that while we are drawing parallels across many literatures, these are functional parallels and are not necessarily structural ones. That is, we are not saying that the same neural pathways are involved in these phenomena. We are only saying that the different neural pathways that are responsible for the appearance of these various phenomena follow the same functional rules - the mechanisms are the same even if the physical parts are distinct. Furthermore, DCD is not a causal mechanism - it is an emergent property of the way the brain is constructed. DCD is the result of neurophysiology (cf. John, 2002, 2003). Finally, it is important to note that we are not proposing a generic learning mechanism such that one biological algorithm can account for all situation interpretation. Rather, we are pointing out that there are strikingly similar empirical results across a wide variety of disciplines that can be understood, in part, by similar cognitive processes. It is entirely possible, even assumed in some cases (i.e., primary language acquisition) that these more generic cognitive processes are complemented and constrained by various limits which may or may not be biological in nature (cf. Bates & Elman, 1996; Elman, in press).

More Details

Final report for the endowment of simulator agents with human-like episodic memory LDRD

Forsythe, James C.; Forsythe, James C.; Speed, Ann S.; Lippitt, Carl E.; Schaller, Mark J.; Xavier, Patrick G.; Thomas, Edward V.; Schoenwald, David A.

This report documents work undertaken to endow the cognitive framework currently under development at Sandia National Laboratories with a human-like memory for specific life episodes. Capabilities have been demonstrated within the context of three separate problem areas. The first year of the project developed a capability whereby simulated robots were able to utilize a record of shared experience to perform surveillance of a building to detect a source of smoke. The second year focused on simulations of social interactions providing a queriable record of interactions such that a time series of events could be constructed and reconstructed. The third year addressed tools to promote desktop productivity, creating a capability to query episodic logs in real time allowing the model of a user to build on itself based on observations of the user's behavior.

More Details

Engineering a transformation of human-machine interaction to an augmented cognitive relationship

Forsythe, James C.; Forsythe, James C.; Bernard, Michael L.; Xavier, Patrick G.; Abbott, Robert G.; Speed, Ann S.; Brannon, Nathan B.

This project is being conducted by Sandia National Laboratories in support of the DARPA Augmented Cognition program. Work commenced in April of 2002. The objective for the DARPA program is to 'extend, by an order of magnitude or more, the information management capacity of the human-computer warfighter.' Initially, emphasis has been placed on detection of an operator's cognitive state so that systems may adapt accordingly (e.g., adjust information throughput to the operator in response to workload). Work conducted by Sandia focuses on development of technologies to infer an operator's ongoing cognitive processes, with specific emphasis on detecting discrepancies between machine state and an operator's ongoing interpretation of events.

More Details
Results 26–46 of 46
Results 26–46 of 46