Structural disorder causes materials’ surface electronic properties, e.g., work function ([Formula: see text]), to vary spatially, yet it is challenging to prove exact causal relationships to underlying ensemble disorder, e.g., roughness or granularity. For polycrystalline Pt, nanoscale resolution photoemission threshold mapping reveals a spatially varying [Formula: see text] eV over a distribution of (111) vicinal grain surfaces prepared by sputter deposition and annealing. With regard to field emission and related phenomena, e.g., vacuum arc initiation, a salient feature of the [Formula: see text] distribution is that it is skewed with a long tail to values down to 5.4 eV, i.e., far below the mean, which is exponentially impactful to field emission via the Fowler–Nordheim relation. We show that the [Formula: see text] spatial variation and distribution can be explained by ensemble variations of granular tilts and surface slopes via a Smoluchowski smoothing model wherein local [Formula: see text] variations result from spatially varying densities of electric dipole moments, intrinsic to atomic steps, that locally modify [Formula: see text]. Atomic step-terrace structure is confirmed with scanning tunneling microscopy (STM) at several locations on our surfaces, and prior works showed STM evidence for atomic step dipoles at various metal surfaces. From our model, we find an atomic step edge dipole [Formula: see text] D/edge atom, which is comparable to values reported in studies that utilized other methods and materials. Our results elucidate a connection between macroscopic [Formula: see text] and the nanostructure that may contribute to the spread of reported [Formula: see text] for Pt and other surfaces and may be useful toward more complete descriptions of polycrystalline metals in the models of field emission and other related vacuum electronics phenomena, e.g., arc initiation.
While it is likely practically a bad idea to shrink a transistor to the size of an atom, there is no arguing that it would be fantastic to have atomic-scale control over every aspect of a transistor – a kind of crystal ball to understand and evaluate new ideas. This project showed that it was possible to take a niche technique used to place dopants in silicon with atomic precision and apply it broadly to study opportunities and limitations in microelectronics. In addition, it laid the foundation to attaining atomic-scale control in semiconductor manufacturing more broadly.
The stability of low-index platinum surfaces and their electronic properties is investigated with density functional theory, toward the goal of understanding the surface structure and electron emission, and identifying precursors to electrical breakdown, on nonideal platinum surfaces. Propensity for electron emission can be related to a local work function, which, in turn, is intimately dependent on the local surface structure. The (1×N) missing row reconstruction of the Pt(110) surface is systematically examined. The (1×3) missing row reconstruction is found to be the lowest in energy, with the (1×2) and (1×4) slightly less stable. In the limit of large (1×N) with wider (111) nanoterraces, the energy accurately approaches the asymptotic limit of the infinite Pt(111) surface. This suggests a local energetic stability of narrow (111) nanoterraces on free Pt surfaces that could be a common structural feature in the complex surface morphologies, leading to work functions consistent with those on thermally grown Pt substrates.
The attachment of dopant precursor molecules to depassivated areas of hydrogen-terminated silicon templated with a scanning tunneling microscope (STM) has been used to create electronic devices with subnanometer precision, typically for quantum physics experiments. This process, which we call atomic precision advanced manufacturing (APAM), dopes silicon beyond the solid-solubility limit and produces electrical and optical characteristics that may also be useful for microelectronic and plasmonic applications. However, scanned probe lithography lacks the throughput required to develop more sophisticated applications. Here, we demonstrate and characterize an APAM device workflow where scanned probe lithography of the atomic layer resist has been replaced by photolithography. An ultraviolet laser is shown to locally and controllably heat silicon above the temperature required for hydrogen depassivation on a nanosecond timescale, a process resistant to under- and overexposure. STM images indicate a narrow range of energy density where the surface is both depassivated and undamaged. Modeling that accounts for photothermal heating and the subsequent hydrogen desorption kinetics suggests that the silicon surface temperatures reached in our patterning process exceed those required for hydrogen removal in temperature-programmed desorption experiments. A phosphorus-doped van der Pauw structure made by sequentially photodepassivating a predefined area and then exposing it to phosphine is found to have a similar mobility and higher carrier density compared with devices patterned by STM. Lastly, it is also demonstrated that photodepassivation and precursor exposure steps may be performed concomitantly, a potential route to enabling APAM outside of ultrahigh vacuum.