Publications / SAND Report

Implementing Neural Adaptive Filtering in Engineered Detection Systems

Chance, Frances S.; Warrender, Christina E.

The retina plays an important role in animal vision --- namely to pre-process visual information before sending it to the brain. The goal of this LDRD was to develop models of motion-sensitive retinal cells for the purpose of developing retinal-inspired algorithms to be applied to real-world data specific to Sandia's national security missions. We specifically focus on detection of small, dim moving targets amidst varying types of clutter or distractor signals. We compare a classic motion-sensitive model, the Hassenstein-Reichardt model, to a model of the OMS (object motion- sensitive) cell, and find that the Reichardt model performs better under continuous clutter (e.g. white noise) but is very sensitive to particular stimulus conditions (e.g. target velocity). We also demonstrate that lateral inhibition, a ubiquitous characteristic of neural circuitry, can effect target-size tuning, improving detection specifically of small targets.