Publications

20 Results
Skip to search filters

Limited-memory techniques for sensor placement in water distribution networks

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

The practical utility of optimization technologies is often impacted by factors that reflect how these tools are used in practice, including whether various real-world constraints can be adequately modeled, the sophistication of the analysts applying the optimizer, and related environmental factors (e.g. whether a company is willing to trust predictions from computational models). Other features are less appreciated, but of equal importance in terms of dictating the successful use of optimization. These include the scale of problem instances, which in practice drives the development of approximate solution techniques, and constraints imposed by the target computing platforms. End-users often lack state-of-the-art computers, and thus runtime and memory limitations are often a significant, limiting factor in algorithm design. When coupled with large problem scale, the result is a significant technological challenge. We describe our experience developing and deploying both exact and heuristic algorithms for placing sensors in water distribution networks to mitigate against damage due intentional or accidental introduction of contaminants. The target computing platforms for this application have motivated limited-memory techniques that can optimize large-scale sensor placement problems. © 2008 Springer Berlin Heidelberg.

More Details

Low-memory Lagrangian relaxation methods for sensor placement in municipal water networks

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Berry, Jonathan W.; Boman, Erik G.; Phillips, Cynthia A.; Riesen, Lee A.

Placing sensors in municipal water networks to protect against a set of contamination events is a classic p-median problem for most objectives when we assume that sensors are perfect. Many researchers have proposed exact and approximate solution methods for this p-median formulation. For full-scale networks with large contamination event suites, one must generally rely on heuristic methods to generate solutions. These heuristics provide feasible solutions, but give no quality guarantee relative to the optimal placement. In this paper we apply a Lagrangian relaxation method in order to compute lower bounds on the expected impact of suites of contamination events. In all of our experiments with single objectives, these lower bounds establish that the GRASP local search method generates solutions that are provably optimal to to within a fraction of a percentage point. Our Lagrangian heuristic also provides good solutions itself and requires only a fraction of the memory of GRASP. We conclude by describing two variations of the Lagrangian heuristic: an aggregated version that trades off solution quality for further memory savings, and a multi-objective version which balances objectives with additional goals. © 2008 ASCE.

More Details

Sensor placement for municipal water networks

Phillips, Cynthia A.; Boman, Erik G.; Carr, Robert D.; Hart, William E.; Berry, Jonathan W.; Watson, Jean-Paul W.; Hart, David B.; Mckenna, Sean A.; Riesen, Lee A.

We consider the problem of placing a limited number of sensors in a municipal water distribution network to minimize the impact over a given suite of contamination incidents. In its simplest form, the sensor placement problem is a p-median problem that has structure extremely amenable to exact and heuristic solution methods. We describe the solution of real-world instances using integer programming or local search or a Lagrangian method. The Lagrangian method is necessary for solution of large problems on small PCs. We summarize a number of other heuristic methods for effectively addressing issues such as sensor failures, tuning sensors based on local water quality variability, and problem size/approximation quality tradeoffs. These algorithms are incorporated into the TEVA-SPOT toolkit, a software suite that the US Environmental Protection Agency has used and is using to design contamination warning systems for US municipal water systems.

More Details

The TEVA-SPOT toolkit for drinking water contaminant warning system design

World Environmental and Water Resources Congress 2008: Ahupua'a - Proceedings of the World Environmental and Water Resources Congress 2008

Hart, William E.; Berry, Jonathan W.; Boman, Erik G.; Murray, Regan; Phillips, Cynthia A.; Riesen, Lee A.; Watson, Jean-Paul W.

We present the TEVA-SPOT Toolkit, a sensor placement optimization tool developed within the USEPA TEVA program. The TEVA-SPOT Toolkit provides a sensor placement framework that facilitates research in sensor placement optimization and enables the practical application of sensor placement solvers to real-world CWS design applications. This paper provides an overview of its key features, and then illustrates how this tool can be flexibly applied to solve a variety of different types of sensor placement problems. © 2008 ASCE.

More Details
20 Results
20 Results