Publications

9 Results
Skip to search filters

Monitoring and Repair of Cement-Geomaterial Interfaces in Borehole and Repository Scenarios

Matteo, Edward N.; McMahon, Kevin A.; Camphouse, Russell C.; Dewers, Thomas D.; Jove Colon, Carlos F.; Fuller, Timothy J.; Mohahgheghi, J.M.; Stormont, J.C.; Taha, M.T.; Pyrak-Nolte, L.P.; Wang, C.-F.; Douba, A.D.; Genedy, M.G.; Fernandez, S.G.; Kandil, U.F.; Soliman, E.E.; Starr, J.S.; Stenko, M.S.

The failure of subsurface seals (i.e., wellbores, shaft and drift seals in a deep geologic nuclear waste repository) has important implications for US Energy Security. The performance of these cementitious seals is controlled by a combination of chemical and mechanical forces, which are coupled processes that occur over multiple length scales. The goal of this work is to improve fundamental understanding of cement-geomaterial interfaces and develop tools and methodologies to characterize and predict performance of subsurface seals. This project utilized a combined experimental and modeling approach to better understand failure at cement-geomaterial interfaces. Cutting-edge experimental methods and characterization methods were used to understand evolution of the material properties during chemo-mechanical alteration of cement-geomaterial interfaces. Software tools were developed to model chemo-mechanical coupling and predict the complex interplay between reactive transport and solid mechanics. Novel, fit-for-purpose materials were developed and tested using fundamental understanding of failure processes at cement- geomaterial interfaces. ACKNOWLEDGEMENTS The authors wish to acknowledge the Earth Sciences Research Foundation for their generous support over the last three years. In particular, we thank Erik Webb for his numerous suggestions, comments, feedback, and encouragement over the course of the project. There many who helped bring this project to fruition, including: Dave Borns, Steve Bauer, Pania Newell, Heeho Park, and Doug Blankenship. There are many support personnel who we thank for their valuable contributions to the logistics and business of management side of the project, including: Tracy Woolever, Libby Sanzero, and Nancy Vermillion.

More Details

Development and deployment of constitutive softening routines in Eulerian hydrocodes

Dewers, Thomas D.; Swan, Matthew S.

The state of the art in failure modeling enables assessment of crack nucleation, propagation, and progression to fragmentation due to high velocity impact. Vulnerability assessments suggest a need to track material behavior through failure, to the point of fragmentation and beyond. This eld of research is particularly challenging for structures made of porous quasi-brittle materials, such as ceramics used in modern armor systems, due to the complex material response when loading exceeds the quasi-brittle material's elastic limit. Further complications arise when incorporating the quasi-brittle material response in multi-material Eulerian hydrocode simulations. In this report, recent e orts in coupling a ceramic materials response in the post-failure regime with an Eulerian hydro code are described. Material behavior is modeled by the Kayenta material model [2] and Alegra as the host nite element code [14]. Kayenta, a three invariant phenomenological plasticity model originally developed for modeling the stress response of geologic materials, has in recent years been used with some success in the modeling of ceramic and other quasi-brittle materials to high velocity impact. Due to the granular nature of ceramic materials, Kayenta allows for signi cant pressures to develop due to dilatant plastic ow, even in shear dominated loading where traditional equations of state predict little or no pressure response. When a material's ability to carry further load is compromised, Kayenta allows the material's strength and sti ness to progressively degrade through the evolution of damage to the point of material failure. As material dilatation and damage progress, accommodations are made within Alegra to treat in a consistent manner the evolving state.

More Details

Computational thermal, chemical, fluid, and solid mechanics for geosystems management

Martinez, Mario J.; Red-Horse, John R.; Carnes, Brian C.; Mesh, Mikhail M.; Field, Richard V.; Davison, Scott M.; Yoon, Hongkyu Y.; Bishop, Joseph E.; Newell, Pania N.; Notz, Patrick N.; Turner, Daniel Z.; Subia, Samuel R.; Hopkins, Polly L.; Moffat, Harry K.; Jove Colon, Carlos F.; Dewers, Thomas D.; Klise, Katherine A.

This document summarizes research performed under the SNL LDRD entitled - Computational Mechanics for Geosystems Management to Support the Energy and Natural Resources Mission. The main accomplishment was development of a foundational SNL capability for computational thermal, chemical, fluid, and solid mechanics analysis of geosystems. The code was developed within the SNL Sierra software system. This report summarizes the capabilities of the simulation code and the supporting research and development conducted under this LDRD. The main goal of this project was the development of a foundational capability for coupled thermal, hydrological, mechanical, chemical (THMC) simulation of heterogeneous geosystems utilizing massively parallel processing. To solve these complex issues, this project integrated research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture. This report summarizes and demonstrates the capabilities that were developed together with the supporting research underlying the models. Key accomplishments are: (1) General capability for modeling nonisothermal, multiphase, multicomponent flow in heterogeneous porous geologic materials; (2) General capability to model multiphase reactive transport of species in heterogeneous porous media; (3) Constitutive models for describing real, general geomaterials under multiphase conditions utilizing laboratory data; (4) General capability to couple nonisothermal reactive flow with geomechanics (THMC); (5) Phase behavior thermodynamics for the CO2-H2O-NaCl system. General implementation enables modeling of other fluid mixtures. Adaptive look-up tables enable thermodynamic capability to other simulators; (6) Capability for statistical modeling of heterogeneity in geologic materials; and (7) Simulator utilizes unstructured grids on parallel processing computers.

More Details

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration

Freeze, Geoffrey A.; Arguello, Jose G.; Bouchard, Julie F.; Criscenti, Louise C.; Dewers, Thomas D.; Edwards, Harold C.; Sassani, David C.; Schultz, Peter A.; Wang, Yifeng

This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

More Details
9 Results
9 Results