Publications

Results 1–25 of 41
Skip to search filters

Casual Evaluations for Identifying Differences between Observations and Earth System Models

Nichol, Jeffrey N.; Peterson, Matthew G.; Peterson, Kara J.

We use a nascent data-driven causal discovery method to find and compare causal relationships in observed data and climate model output. We consider ten different features in the Arctic climate collected from public databases on observational and Energy Exascale Earth System Model (E3SM) data. In identifying and analyzing the resulting causal networks, we make meaningful comparisons between observed and climate model interdependencies. This work demonstrates our ability to apply the PCMCI causal discovery algorithm to Arctic climate data, that there are noticeable similarities between observed and simulated Arctic climate dynamics, and that further work is needed to identify specific areas for improvement to better align models with natural observations.

More Details

Generating uncertainty distributions for seismic signal onset times

Bulletin of the Seismological Society of America

Peterson, Matthew G.; Vollmer, Charles V.; Brogan, Ronald; Stracuzzi, David J.; Young, Christopher J.

Signal arrival-time estimation plays a critical role in a variety of downstream seismic analy-ses, including location estimation and source characterization. Any arrival-time errors propagate through subsequent data-processing results. In this article, we detail a general framework for refining estimated seismic signal arrival times along with full estimation of their associated uncertainty. Using the standard short-term average/long-term average threshold algorithm to identify a search window, we demonstrate how to refine the pick estimate through two different approaches. In both cases, new waveform realizations are generated through bootstrap algorithms to produce full a posteriori estimates of uncertainty of onset arrival time of the seismic signal. The onset arrival uncertainty estimates provide additional data-derived information from the signal and have the potential to influence seismic analysis along several fronts.

More Details

Quantifying Uncertainty to Improve Decision Making in Machine Learning

Stracuzzi, David J.; Darling, Michael C.; Peterson, Matthew G.; Chen, Maximillian G.

Data-driven modeling, including machine learning methods, continue to play an increas- ing role in society. Data-driven methods impact decision making for applications ranging from everyday determinations about which news people see and control of self-driving cars to high-consequence national security situations related to cyber security and analysis of nuclear weapons reliability. Although modern machine learning methods have made great strides in model induction and show excellent performance in a broad variety of complex domains, uncertainty remains an inherent aspect of any data-driven model. In this report, we provide an update to the preliminary results on uncertainty quantifi- cation for machine learning presented in SAND2017-6776. Specifically, we improve upon the general problem definition and expand upon the experiments conducted for the earlier re- port. Most importantly, we summarize key lessons learned about how and when uncertainty quantification can inform decision making and provide valuable insights into the quality of learned models and potential improvements to them. Acknowledgements The authors thank Kristina Czuchlewski, John Feddema, Todd Jones, Chris Young, Rudy Garcia, Rich Field, Ann Speed, Randy Brost, Stephen Dauphin, and countless others for providing helpful discussion and comments throughout the life of this project. This work was funded by the Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program.

More Details

Dynamic tuning of seismic signal detector trigger levels for local networks

Bulletin of the Seismological Society of America

Draelos, Timothy J.; Peterson, Matthew G.; Knox, Hunter A.; Lawry, Benjamin J.; Phillips-Alonge, Kristin E.; Ziegler, Abra E.; Chael, Eric P.; Young, Christopher J.; Faust, Aleksandra

The quality of automatic signal detections from sensor networks depends on individual detector trigger levels (TLs) from each sensor. The largely manual process of identifying effective TLs is painstaking and does not guarantee optimal configuration settings, yet achieving superior automatic detection of signals and ultimately, events, is closely related to these parameters. We present a Dynamic Detector Tuning (DDT) system that automatically adjusts effective TL settings for signal detectors to the current state of the environment by leveraging cooperation within a local neighborhood of network sensors. After a stabilization period, the DDT algorithm can adapt in near-real time to changing conditions and automatically tune a signal detector to identify (detect) signals from only events of interest. Our current work focuses on reducing false signal detections early in the seismic signal processing pipeline, which leads to fewer false events and has a significant impact on reducing analyst time and effort. This system provides an important new method to automatically tune detector TLs for a network of sensors and is applicable to both existing sensor performance boosting and new sensor deployment. With ground truth on detections from a local neighborhood of seismic sensors within a network monitoring the Mount Erebus volcano in Antarctica, we show that DDT reduces the number of false detections by 18% and the number of missed detections by 11% when compared with optimal fixed TLs for all sensors.

More Details

Data-driven uncertainty quantification for multisensor analytics

Proceedings of SPIE - The International Society for Optical Engineering

Stracuzzi, David J.; Darling, Michael C.; Chen, Maximillian G.; Peterson, Matthew G.

We discuss uncertainty quantification in multisensor data integration and analysis, including estimation methods and the role of uncertainty in decision making and trust in automated analytics. The challenges associated with automatically aggregating information across multiple images, identifying subtle contextual cues, and detecting small changes in noisy activity patterns are well-established in the intelligence, surveillance, and reconnaissance (ISR) community. In practice, such questions cannot be adequately addressed with discrete counting, hard classifications, or yes/no answers. For a variety of reasons ranging from data quality to modeling assumptions to inadequate definitions of what constitutes "interesting" activity, variability is inherent in the output of automated analytics, yet it is rarely reported. Consideration of these uncertainties can provide nuance to automated analyses and engender trust in their results. In this work, we assert the importance of uncertainty quantification for automated data analytics and outline a research agenda. We begin by defining uncertainty in the context of machine learning and statistical data analysis, identify its sources, and motivate the importance and impact of its quantification. We then illustrate these issues and discuss methods for data-driven uncertainty quantification in the context of a multi-source image analysis example. We conclude by identifying several specific research issues and by discussing the potential long-term implications of uncertainty quantification for data analytics, including sensor tasking and analyst trust in automated analytics.

More Details
Results 1–25 of 41
Results 1–25 of 41