Publications

Results 1–25 of 37
Skip to search filters

Performance Efficiency and Effectivness of Supercomputers

Leland, Robert; Rajan, Mahesh R.; Heroux, Michael A.

Our first purpose here is to offer to a general technical and policy audience a perspective on whether the supercomputing community should focus on improving the efficiency of supercomputing systems and their use rather than on building larger and ostensibly more capable systems that are used at low efficiency. After first summarizing our content and defining some necessary terms, we give a concise answer to this question. We then set this in context by characterizing performance of current supercomputing systems on a variety of benchmark problems and actual problems drawn from workloads in the national security, industrial, and scientific context. Along the way we answer some related questions, identify some important technological trends, and offer a perspective on the significance of these trends. Our second purpose is to give a reasonably broad and transparent overview of the related issue space and thereby to better equip the reader to evaluate commentary and controversy concerning supercomputing performance. For example, questions repeatedly arise concerning the Linpack benchmark and its predictive power, so we consider this in moderate depth as an example. We also characterize benchmark and application performance for scientific and engineering use of supercomputers and offer some guidance on how to think about these. Examples here are drawn from traditional scientific computing. Other problem domains, for example, data analytics, have different performance characteristics that are better captured by different benchmark problems or applications, but the story in those domains is similar in character and leads to similar conclusions with regard to the motivating question. For more on this topic, see Large-Scale Data Analytics and Its Relationship to Simulation. 1 Director, Computing Research Center, Sandia National Laboratories 2 Distinguished Member of the Technical Staff, Sandia National Laboratories 3 Distinguished Member of the Technical Staff, Sandia National Laboratories 4 Distinguished Member of the Technical Staff , Sandia National Laboratories

More Details

ASC Trilab L2 Codesign Milestone 2015

Trott, Christian R.; Hammond, Simon D.; Dinge, Dennis D.; Lin, Paul L.; Vaughan, Courtenay T.; Cook, Jeanine C.; Rajan, Mahesh R.; Edwards, Harold C.; Hoekstra, Robert J.

For the FY15 ASC L2 Trilab Codesign milestone Sandia National Laboratories performed two main studies. The first study investigated three topics (performance, cross-platform portability and programmer productivity) when using OpenMP directives and the RAJA and Kokkos programming models available from LLNL and SNL respectively. The focus of this first study was the LULESH mini-application developed and maintained by LLNL. In the coming sections of the report the reader will find performance comparisons (and a demonstration of portability) for a variety of mini-application implementations produced during this study with varying levels of optimization. Of note is that the implementations utilized including optimizations across a number of programming models to help ensure claims that Kokkos can provide native-class application performance are valid. The second study performed during FY15 is a performance assessment of the MiniAero mini-application developed by Sandia. This mini-application was developed by the SIERRA Thermal-Fluid team at Sandia for the purposes of learning the Kokkos programming model and so is available in only a single implementation. For this report we studied its performance and scaling on a number of machines with the intent of providing insight into potential performance issues that may be experienced when similar algorithms are deployed on the forthcoming Trinity ASC ATS platform.

More Details

Investigating the impact of the Cielo Cray XE6 architecture on scientific application codes

IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum

Vaughan, Courtenay T.; Rajan, Mahesh R.; Barrett, Richard F.; Doerfler, Douglas W.; Pedretti, Kevin P.

Cielo, a Cray XE6, is the Department of Energy NNSA Advanced Simulation and Computing (ASC) campaign's newest capability machine. Rated at 1.37 PFLOPS, it consists of 8,944 dual-socket oct-core AMD Magny-Cours compute nodes, linked using Cray's Gemini interconnect. Its primary mission objective is to enable a suite of the ASC applications implemented using MPI to scale to tens of thousands of cores. Cielo is an evolutionary improvement to a successful architecture previously available to many of our codes, thus enabling a basis for understanding the capabilities of this new architecture. Using three codes strategically important to the ASC campaign, and supplemented with some micro-benchmarks that expose the fundamental capabilities of the XE6, we report on the performance characteristics and capabilities of Cielo. © 2011 IEEE.

More Details
Results 1–25 of 37
Results 1–25 of 37