Publications

Results 1–25 of 31
Skip to search filters

ASC ATDM Level 2 Milestone #6358: Assess Status of Next Generation Components and Physics Models in EMPIRE

Bettencourt, Matthew T.; Kramer, Richard M.; Cartwright, Keith C.; Phillips, Edward G.; Ober, Curtis C.; Pawlowski, Roger P.; Swan, Matthew S.; Kalashnikova, Irina; Phipps, Eric T.; Conde, Sidafa C.; Cyr, Eric C.; Ulmer, Craig D.; Kordenbrock, Todd H.; Levy, Scott L.; Templet, Gary J.; Hu, Jonathan J.; Lin, Paul L.; Glusa, Christian A.; Siefert, Christopher S.; Glass, Micheal W.

This report documents the outcome from the ASC ATDM Level 2 Milestone 6358: Assess Status of Next Generation Components and Physics Models in EMPIRE. This Milestone is an assessment of the EMPIRE (ElectroMagnetic Plasma In Realistic Environments) application and three software components. The assessment focuses on the electromagnetic and electrostatic particle-in-cell solu- tions for EMPIRE and its associated solver, time integration, and checkpoint-restart components. This information provides a clear understanding of the current status of the EMPIRE application and will help to guide future work in FY19 in order to ready the application for the ASC ATDM L 1 Milestone in FY20. It is clear from this assessment that performance of the linear solver will have to be a focus in FY19.

More Details

Formulation and computation of dynamic, interface-compatible Whitney complexes in three dimensions

Journal of Computational Physics

Kramer, Richard M.; Siefert, Christopher S.; Voth, Thomas E.; Bochev, Pavel B.

A discrete De Rham complex enables compatible, structure-preserving discretizations for a broad range of partial differential equations problems. Such discretizations can correctly reproduce the physics of interface problems, provided the grid conforms to the interface. However, large deformations, complex geometries, and evolving interfaces makes generation of such grids difficult. We develop and demonstrate two formally equivalent approaches that, for a given background mesh, dynamically construct an interface-conforming discrete De Rham complex. Both approaches start by dividing cut elements into interface-conforming subelements but differ in how they build the finite element basis on these subelements. The first approach discards the existing non-conforming basis of the parent element and replaces it by a dynamic set of degrees of freedom of the same kind. The second approach defines the interface-conforming degrees of freedom on the subelements as superpositions of the basis functions of the parent element. These approaches generalize the Conformal Decomposition Finite Element Method (CDFEM) and the extended finite element method with algebraic constraints (XFEM-AC), respectively, across the De Rham complex.

More Details
Results 1–25 of 31
Results 1–25 of 31