Publications

43 Results
Skip to search filters

Atomic step disorder on polycrystalline surfaces leads to spatially inhomogeneous work functions

Journal of Vacuum Science and Technology A

Bussmann, Ezra B.; smith, sean w.; Scrymgeour, David S.; Brumbach, Michael T.; Lu, Ping L.; Dickens, Sara D.; Michael, Joseph R.; Ohta, Taisuke O.; Hjalmarson, Harold P.; Schultz, Peter A.; Clem, Paul G.; Hopkins, Matthew M.; Moore, Christopher M.

Structural disorder causes materials’ surface electronic properties, e.g., work function ([Formula: see text]), to vary spatially, yet it is challenging to prove exact causal relationships to underlying ensemble disorder, e.g., roughness or granularity. For polycrystalline Pt, nanoscale resolution photoemission threshold mapping reveals a spatially varying [Formula: see text] eV over a distribution of (111) vicinal grain surfaces prepared by sputter deposition and annealing. With regard to field emission and related phenomena, e.g., vacuum arc initiation, a salient feature of the [Formula: see text] distribution is that it is skewed with a long tail to values down to 5.4 eV, i.e., far below the mean, which is exponentially impactful to field emission via the Fowler–Nordheim relation. We show that the [Formula: see text] spatial variation and distribution can be explained by ensemble variations of granular tilts and surface slopes via a Smoluchowski smoothing model wherein local [Formula: see text] variations result from spatially varying densities of electric dipole moments, intrinsic to atomic steps, that locally modify [Formula: see text]. Atomic step-terrace structure is confirmed with scanning tunneling microscopy (STM) at several locations on our surfaces, and prior works showed STM evidence for atomic step dipoles at various metal surfaces. From our model, we find an atomic step edge dipole [Formula: see text] D/edge atom, which is comparable to values reported in studies that utilized other methods and materials. Our results elucidate a connection between macroscopic [Formula: see text] and the nanostructure that may contribute to the spread of reported [Formula: see text] for Pt and other surfaces and may be useful toward more complete descriptions of polycrystalline metals in the models of field emission and other related vacuum electronics phenomena, e.g., arc initiation.

More Details

Final report on LDRD project : coupling strategies for multi-physics applications

Hopkins, Matthew M.; Pawlowski, Roger P.; Moffat, Harry K.; Carnes, Brian C.; Hooper, Russell H.

Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.

More Details

Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity

Adams, Brian M.; Wittwer, Jonathan W.; Bichon, Barron J.; Carnes, Brian C.; Copps, Kevin D.; Eldred, Michael S.; Hopkins, Matthew M.; Neckels, David C.; Notz, Patrick N.; Subia, Samuel R.

This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

More Details
43 Results
43 Results