This report is a collection of documents written as part of the Laboratory Directed Research and Development (LDRD) project A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators. We present developments in two categories of multiscale mathematics and analysis. The first, continuum-to-continuum (CtC) multiscale, includes problems that allow application of the same continuum model at all scales with the primary barrier to simulation being computing resources. The second, atomistic-to-continuum (AtC) multiscale, represents applications where detailed physics at the atomistic or molecular level must be simulated to resolve the small scales, but the effect on and coupling to the continuum level is frequently unclear.
In gas chromatography, a chemical sample separates into its constituent components as it travels along a long thin column. As the component chemicals exit the column they are detected and identified, allowing the chemical makeup of the sample to be determined. For correct identification of the component chemicals, the distribution of the concentration of each chemical along the length of the column must be nearly symmetric. The prediction and control of asymmetries in gas chromatography has been an active research area since the advent of the technique. In this paper, we develop from first principles a general model for isothermal linear chromatography. We use this model to develop closed-form expressions for terms related to the first, second, and third moments of the distribution of the concentration, which determines the velocity, diffusion rate, and asymmetry of the distribution. We show that for all practical experimental situations, only fronting peaks are predicted by this model, suggesting that a nonlinear chromatography model is required to predict tailing peaks. For situations where asymmetries arise, we analyze the rate at which the concentration distribution returns to a normal distribution. Numerical examples are also provided.