Grant, R.E., Hammond, S.D., Bachman, W.B., Levenhagen, M., Olivier, S.L., Bachman, W.B., Ward, L., Younge, A.J., & Younge, A.J. (2023). Enabling power measurement and control on Astra: The first petascale Arm supercomputer. Concurrency and Computation: Practice and Experience, 35(15). https://doi.org/10.1002/cpe.7303
Publications
Search results
Jump to search filtersBachman, W.B., Maupin, K.A., Rodgers, T., & Rodgers, T. (2023). Monotonic Gaussian Process for Physics-Constrained Machine Learning With Materials Science Applications. Journal of Computing and Information Science in Engineering, 23(1). https://doi.org/10.1115/1.4055852
Bachman, W.B., Sun, J., Liu, D., Wang, Y., Wildey, T., & Wildey, T. (2022). A Stochastic Reduced-Order Model for Statistical Microstructure Descriptors Evolution. Journal of Computing and Information Science in Engineering, 22(6). https://doi.org/10.1115/1.4054237
Bachman, W.B., Wildey, T., Lim, H., & Lim, H. (2022). Microstructure-Sensitive Uncertainty Quantification for Crystal Plasticity Finite Element Constitutive Models Using Stochastic Collocation Methods. Frontiers in Materials, 9. https://doi.org/10.3389/fmats.2022.915254
Mariner, P.E., Debusschere, B.J., Fukuyama, D.E., Harvey, J.A., Laforce, T., Leone, R.C., Bachman, W.B., Swiler, L.P., Taconi, A., & Taconi, A. (2022). GDSA Framework Development and Process Model Integration FY2022. https://doi.org/10.2172/1893995
Laforce, T., Basurto, E., Chang, K.W., Ebeida, M., Eymold, W., Faucett, C.A., Jayne, R., Kucinski, N., Leone, R.C., Mariner, P.E., Bachman, W.B., & Bachman, W.B. (2022). GDSA Repository Systems Analysis Investigations in FY2022. https://doi.org/10.2172/1898245
Maupin, K.A., Bachman, W.B., Bachman, W.B., Knapp, P.F., Joseph, V.R., Wu, C.F.J., Glinsky, M.E., Valaitis, S.M., & Valaitis, S.M. (2022). Towards Z-Next: The Integration of Theory, Experiments, and Computational Simulation in a Bayesian Data Assimilation Framework. https://doi.org/10.2172/1891191
Hansen, S.B., Baczewski, A.D., Gomez, T., Hentschel, T.W., Jennings, C.A., Kononov, A., Nagayama, T., Adler, K., Cangi, A., Cochrane, K.R., Bachman, W.B., Schleife, A., & Schleife, A. (2022). Improving Predictive Capability in REHEDS Simulations with Fast, Accurate, and Consistent Non-Equilibrium Material Properties. https://doi.org/10.2172/1890268
Bachman, W.B., Portone, T., Dandekar, R., Rackauckas, C., Bandy, R.J., Huerta, J.G., Dytzel, I., & Dytzel, I. (2022). Model-Form Epistemic Uncertainty Quantification for Modeling with Differential Equations: Application to Epidemiology. https://doi.org/10.2172/1888443
Robinson, A.C., Swan, M.S., Harvey, E.C., Klein, B., Lawson, G., Milewicz, R.M., Bachman, W.B., Schmitz, M.E., Warnock, S.A., & Warnock, S.A. (2022). An introduction to developing GitLab/Jacamar runner analyst centric workflows at Sandia. https://doi.org/10.2172/1885645
Swiler, L.P., Basurto, E., Brooks, D.M., Eckert, A., Leone, R.C., Mariner, P.E., Portone, T., Bachman, W.B., & Bachman, W.B. (2022). Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2022). https://doi.org/10.2172/1884909
Roberds, N.A., Cartwright, K.L., Sandoval, A.J., Beckwith, K., Cyr, E.C., Bachman, W.B., & Bachman, W.B. (2022). Numerical simulation of a relativistic magnetron using a fluid electron model. Physics of Plasmas, 29(8). https://doi.org/10.1063/5.0090351
Hamlin, N.D., Smith, T.M., Roberds, N.A., Bachman, W.B., Beckwith, K., & Beckwith, K. (2022). Electrostatic Relativistic Fluid Models of Electron Emission in a Warm Diode. IEEE International Conference on Plasma Science (ICOPS), 2022, pp. 1-26. https://doi.org/10.1109/icops45751.2022.9813152
Schonbein, W., Barrett, B.W., Brightwell, R.B., Grant, R.E., Hemmert, K.S., Bachman, W.B., Underwood, K., Riesen, R., Hoefler, T., Barbe, M., Suraty Filho, L.H., Ratchov, A., MacCabe, A.B., & MacCabe, A.B. (2022). The Portals 4.3 Network Programming Interface. https://doi.org/10.2172/1875218
Adams, B.M., Bohnhoff, W.J., Dalbey, K.R., Ebeida, M.S., Eddy, J.P., Eldred, M.S., Hooper, R.W., Hough, P.D., Hu, K.T., Jakeman, J.D., Khalil, M., Maupin, K.A., Monschke, J.A., Ridgway, E.M., Rushdi, A.A., Seidl, D.T., Stephens, J.A., Swiler, L.P., Bachman, W.B., Winokur, J.G., & Winokur, J.G. (2021). Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis (V.6.16 User's Manual). https://doi.org/10.2172/1868142
Bachman, W.B., Schleife, A., Baczewski, A.D., Hansen, S.B., Kononov, A., & Kononov, A. (2021). Optical Properties of Be at High Temperatures from First Principles [Conference Presenation]. https://doi.org/10.2172/1897695
Steiner, A.M., Siefert, C., Shipley, G.A., Redline, E., Dickens, S.M., Jaramillo, R., Chavez, T.P., Hutsel, B.T., Bachman, W.B., Peterson, K.J., Bell, K., Balogun, S., Losego, M., Sammeth, T., Kern, I., Harjes, C., Gilmore, M., Lehr, J., & Lehr, J. (2021). Investigating Volumetric Inclusions of Semiconductor Materials to Improve Flashover Resistance in Dielectrics [Conference Poster]. https://doi.org/10.2172/1899533
Leger, M., Darling, M.C., Jones, S.T., Matzen, L.E., Stracuzzi, D.J., Wilson, A.T., Bueno, D., Christentsen, M., Ginaldi, M., Bachman, W.B., Heidbrink, S., Howell, B.C., Leger, C., Reedy, G., Rogers, A.N., Williams, J., & Williams, J. (2021). Exploring Explicit Uncertainty for Binary Analysis (EUBA). https://doi.org/10.2172/1832314
Bachman, W.B., Tranchida, J., & Tranchida, J. (2021). Multi-fidelity Gaussian process and Bayesian optimization for materials design: Application to ternary random alloys [Conference Presenation]. https://doi.org/10.2172/1898471
Bachman, W.B., Eldred, M., McCann, S., Wang, Y., & Wang, Y. (2021). srMO-BO-3GP: A sequential regularized multi-objective Bayesian optimization for constrained design applications using an uncertain Pareto classifier. Journal of Mechanical Design, 144(3). https://doi.org/10.1115/1.4052445
Oldfield, R., Kramer, S., Rushdi, A., Bachman, W.B., Emery, J., Kuberry, P., Ray, J., Ackerman, S., Cyr, E.C., Saavedra, G., Hughes, C., Cardwell, S.G., Smith, J.D., & Smith, J.D. (2021). The ASC Advanced Machine Learning Initiative at Sandia National Laboratories: FY21 Accomplishments and FY22 Plans [Presentation]. https://www.osti.gov/biblio/1895016
Smith, M.R., Bachman, W.B., Ames, A., Carey, A., Cuellar, C.R., Field, R.V., Maxfield, T., Mitchell, S.A., Morris, E., Moss, B., Nyre-Yu, M., Rushdi, A., Stites, M.C., Smutz, C., Zhou, X., & Zhou, X. (2021). SAGE Intrusion Detection System: Sensitivity Analysis Guided Explainability for Machine Learning. https://doi.org/10.2172/1820253
Brandt, J.M., Cook, J., Aaziz, O., Allan, B., Devine, K., Bachman, W.B., Gentile, A.C., Hammond, S., Kelley, B., Lopatina, L., Moore, S.G., Olivier, S.L., Bachman, W.B., Poliakoff, D., Pawlowski, R., Regier, P., Schmitz, M.E., Schwaller, B., Surjadidjaja, V., … Walton, S.P. (2021). Integrated System and Application Continuous Performance Monitoring and Analysis Capability [Presentation]. https://www.osti.gov/biblio/1886175
Shand, L., Bachman, W.B., Staid, A., Roesler, E.L., Lyons, D., Simonson, K.M., Patel, L., Hickey, J., Gray, S., & Gray, S. (2021). Local limits of detection for anthropogenic aerosol-cloud interactions. https://doi.org/10.2172/1855009
Bachman, W.B. (2021). Gaussian process and Bayesian optimization - Bridging the gap between theory and practice in materials science [Conference Presenation]. https://doi.org/10.2172/1888412
Aaziz, O., Allan, B., Brandt, J.M., Cook, J., Devine, K., Elliott, J., Gentile, A.C., Hammond, S., Kelley, B., Lopatina, L., Moore, S.G., Olivier, S.L., Bachman, W.B., Poliakoff, D., Pawlowski, R., Regier, P., Schmitz, M.E., Schwaller, B., Surjadidjaja, V., … Walton, S.P. (2021). Integrated System and Application Continuous Performance Monitoring and Analysis Capability. https://doi.org/10.2172/1819812
Oldfield, R., Plimpton, S.J., Bachman, W.B., Poliakoff, D., Sornborger, A., & Sornborger, A. (2021). Memo regarding the Final Review of FY21 ASC L2 Milestone 7840: Neural Mini-Apps for Future Heterogeneous HPC Systems. https://doi.org/10.2172/1825628
Swiler, L.P., Basurto, E., Brooks, D.M., Eckert, A., Leone, R.C., Mariner, P.E., Portone, T., Bachman, W.B., Stein, E., & Stein, E. (2021). Uncertainty and Sensitivity Analysis Methods and Applications in the GDSA Framework (FY2021). https://doi.org/10.2172/1855018
Bachman, W.B., Schleife, A., Kononov, A., Hansen, S.B., Baczewski, A.D., & Baczewski, A.D. (2021). Optical Properties of Be at High Temperatures from First Principles [Presentation]. https://www.osti.gov/biblio/1884067
Harvey-Thompson, A.J., Geissel, M., Crabtree, J.A., Weis, M.R., Gomez, M.R., Fein, J.R., Ampleford, D.J., Awe, T.J., Chandler, G.A., Galloway, B.R., Hansen, S.B., Hanson, J., Harding, E.C., Jennings, C.A., Kimmel, M., Knapp, P.F., Lamppa, D.C., Bachman, W.B., Mangan, M.A., … Smith, G.E. (2021). Increased preheat energy to MagLIF targets with cryogenic cooling [Conference Presenation]. https://doi.org/10.2172/1888953
Laros, J.H., Hammond, S., Bachman, W.B., & Bachman, W.B. (2021). Vanguard-II Application Evaluation Thrust [Presentation]. https://www.osti.gov/biblio/1884443
Younge, A.J., Hammond, S., Bachman, W.B., Bachman, W.B., & Bachman, W.B. (2021). Sandias Experiences with Arm [Conference Presenation]. https://doi.org/10.2172/1875380
Younge, A.J., Fuller, T.J., Bachman, W.B., Bova, S.W., & Bova, S.W. (2021). A Case Study in Using Containers to Build and Distribute HPC Applications: ALEGRA [Conference Presenation]. https://doi.org/10.2172/1876620
Wildey, T., Butler, T., Jakeman, J.D., Bachman, W.B., & Bachman, W.B. (2021). Solving Stochastic Inverse Problems for Property-Structure Relationships in Computational Materials Science [Conference Presenation]. https://doi.org/10.2172/1890916
Maupin, K.A., Bachman, W.B., Glinsky, M.E., & Glinsky, M.E. (2021). Multi-Output Surrogate Construction for Fusion Simulations [Conference Presenation]. https://doi.org/10.2172/1888976
Portone, T., Bachman, W.B., Dandekar, R., Rackauckas, C., & Rackauckas, C. (2021). Learning Missing Mechanisms in a Dynamical System from a Subset of State Variable Observations [Conference Presenation]. https://doi.org/10.2172/1889367
Bachman, W.B., Portone, T., & Portone, T. (2021). Assessing the Efficacy of Universal Differential Equations to Learn Missing Dynamics from a Subset of Observable State Variables [Conference Presenation]. https://doi.org/10.2172/1882346
Krygier, M., Labonte, T., Martinez, C., Norris, C., Sharma, K., Collins, L.N., Mukherjee, P.P., Bachman, W.B., & Bachman, W.B. (2021). Quantifying the Unknown: Impact of Segmentation Uncertainty on Image-based Simulations [Conference Presenation]. https://doi.org/10.2172/1884065
Giem, E., Bachman, W.B., Poliakoff, D., Teranishi, K., Hollman, D., & Hollman, D. (2021). Resilient Kokkos: Resilient Execution Spaces [Presentation]. https://www.osti.gov/biblio/1888644
Younge, A.J., Hammond, S., Bachman, W.B., Bachman, W.B., & Bachman, W.B. (2021). Containers and the Arm Ecosystem [Conference Presenation]. https://doi.org/10.2172/1871627
Rodgers, T., Abdeljawad, F., Moser, D.R., Bachman, W.B., Carroll, J.D., Jared, B.H., Bolintineanu, D.S., Mitchell, J.A., Madison, J., & Madison, J. (2021). Simulation of powder bed metal additive manufacturing microstructures with coupled finite difference-Monte Carlo method. Additive Manufacturing, 41. https://doi.org/10.1016/j.addma.2021.101953
Bachman, W.B. (2021). Advanced Tri-lab Software Environment (ATSE) [Presentation]. https://www.osti.gov/biblio/1869233
Bachman, W.B., Maniaci, D.C., Geraci, G., Seidl, D.T., Herges, T., Brown, K.A., Cutler, J.J., & Cutler, J.J. (2021). Application of Multifidelity Uncertainty Quantification Towards Multi-turbine Interaction and Wake Characterization [Conference Presenation]. https://doi.org/10.2172/1870979
Kramer, S., Bolintineanu, D.S., Long, K., Hamel, C., Frankel, A., Jones, R.E., Bachman, W.B., Swiler, L.P., Johnson, K.L., & Johnson, K.L. (2021). Mechanics of Materials Utilizing Machine Learning: Examples at Sandia National Laboratories [Conference Presenation]. https://doi.org/10.2172/1867564
Younge, A.J., Agelastos, A.M., Lawson, G., Bachman, W.B., & Bachman, W.B. (2021). Containers at Sandia [Conference Presenation]. https://doi.org/10.2172/1863696
Hammond, S., Bachman, W.B., Bachman, W.B., Younge, A.J., Hoekstra, R.J., & Hoekstra, R.J. (2021). Experiences with Arm [Presentation]. https://www.osti.gov/biblio/1866197
Hammond, S., Curry, M., Davis, K., Dang, V., Guba, O., Hoekstra, R.J., Bachman, W.B., Bachman, W.B., Poliakoff, D., Rajamanickam, S., Trott, C.R., Younge, A.J., & Younge, A.J. (2021). Fugaku and A64FX Update - April 2021 [Presentation]. https://www.osti.gov/biblio/1882368
Bachman, W.B., Ivie, J.A., Campbell, Q.T., Brickson, M.I., Schultz, P.A., Muller, R.P., Baczewski, A.D., Mounce, A.M., Bussmann, E., Misra, S., & Misra, S. (2021). Stochastic atomistic disorder in atomic-precision doping [Conference Presenation]. https://doi.org/10.2172/1855714
Olivier, S.L., Brightwell, R.B., Ferreira, K., Grant, R., Levy, S.L.N., Bachman, W.B., Younge, A.J., & Younge, A.J. (2021). SNL ATDM Software Ecosystem Operating Systems and On-Node Runtime [Presentation]. https://www.osti.gov/biblio/1861479
Bachman, W.B., Tranchida, J., Wildey, T., Thompson, A.P., & Thompson, A.P. (2021). Multi-fidelity ML/UQ and Bayesian Optimization for Materials Design: Application to Ternary Random Alloys [Conference Poster]. https://doi.org/10.2172/1853874