Publications

24 Results
Skip to search filters

DSMC simulations of turbulent flows at moderate Reynolds numbers

AIP Conference Proceedings

Gallis, Michail A.; Torczynski, J.R.; Bitter, Neal B.; Koehler, Timothy P.; Moore, Stan G.; Plimpton, Steven J.; Papadakis, G.

The Direct Simulation Monte Carlo (DSMC) method has been used for more than 50 years to simulate rarefied gases. The advent of modern supercomputers has brought higher-density near-continuum flows within range. This in turn has revived the debate as to whether the Boltzmann equation, which assumes molecular chaos, can be used to simulate continuum flows when they become turbulent. In an effort to settle this debate, two canonical turbulent flows are examined, and the results are compared to available continuum theoretical and numerical results for the Navier-Stokes equations.

More Details

Gas-kinetic simulation of sustained turbulence in minimal Couette flow

Physical Review Fluids

Gallis, Michail A.; Torczynski, J.R.; Bitter, Neal B.; Koehler, Timothy P.; Plimpton, Steven J.; Papadakis, G.

We provide a demonstration that gas-kinetic methods incorporating molecular chaos can simulate the sustained turbulence that occurs in wall-bounded turbulent shear flows. The direct simulation Monte Carlo method, a gas-kinetic molecular method that enforces molecular chaos for gas-molecule collisions, is used to simulate the minimal Couette flow at Re=500. The resulting law of the wall, the average wall shear stress, the average kinetic energy, and the continually regenerating coherent structures all agree closely with corresponding results from direct numerical simulation of the Navier-Stokes equations. These results indicate that molecular chaos for collisions in gas-kinetic methods does not prevent development of molecular-scale long-range correlations required to form hydrodynamic-scale turbulent coherent structures.

More Details

Molecular-Level Simulations of Turbulence and Its Decay

Physical Review Letters

Gallis, Michail A.; Bitter, Neal B.; Koehler, Timothy P.; Torczynski, J.R.; Plimpton, Steven J.; Papadakis, G.

We provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov -5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can be used to investigate turbulent flows quantitatively.

More Details

Direct simulation monte carlo investigation of hydrodynamic instabilities in gases

AIP Conference Proceedings

Gallis, Michail A.; Koehler, Timothy P.; Torczynski, J.R.; Plimpton, Steven J.

The Rayleigh-Taylor instability (RTI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, two-dimensional and three-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode-perturbed interfaces between two atmospheric-pressure monatomic gases. The DSMC simulations reproduce all qualitative features of the RTI and are in reasonable quantitative agreement with existing theoretical and empirical models in the linear, nonlinear, and self-similar regimes. At late times, the instability is seen to exhibit a self-similar behavior, in agreement with experimental observations. For the conditions simulated diffusion can influence the initial instability growth significantly.

More Details

Direct simulation Monte Carlo investigation of the Rayleigh-Taylor instability

Physical Review Fluids

Gallis, Michail A.; Koehler, Timothy P.; Torczynski, J.R.; Plimpton, Steven J.

In this paper, the Rayleigh-Taylor instability (RTI) is investigated using the direct simulation Monte Carlo (DSMC) method of molecular gas dynamics. Here, fully resolved two-dimensional DSMC RTI simulations are performed to quantify the growth of flat and single-mode perturbed interfaces between two atmospheric-pressure monatomic gases as a function of the Atwood number and the gravitational acceleration. The DSMC simulations reproduce many qualitative features of the growth of the mixing layer and are in reasonable quantitative agreement with theoretical and empirical models in the linear, nonlinear, and self-similar regimes. In some of the simulations at late times, the instability enters the self-similar regime, in agreement with experimental observations. Finally, for the conditions simulated, diffusion can influence the initial instability growth significantly.

More Details

Stochastic Particle Real Time Analyzer (SPARTA) Validation and Verification Suite

Gallis, Michail A.; Koehler, Timothy P.; Plimpton, Steven J.

This report presents the test cases used to verify, validate and demonstrate the features and capabilities of the first release of the 3D Direct Simulation Monte Carlo (DSMC) code SPARTA (Stochastic Real Time Particle Analyzer). The test cases included in this report exercise the most critical capabilities of the code like the accurate representation of physical phenomena (molecular advection and collisions, energy conservation, etc.) and implementation of numerical methods (grid adaptation, load balancing, etc.). Several test cases of simple flow examples are shown to demonstrate that the code can reproduce phenomena predicted by analytical solutions and theory. A number of additional test cases are presented to illustrate the ability of SPARTA to model flow around complicated shapes. In these cases, the results are compared to other well-established codes or theoretical predictions. This compilation of test cases is not exhaustive, and it is anticipated that more cases will be added in the future.

More Details
24 Results
24 Results