Publications / Journal Article

Molecular-Level Simulations of Turbulence and Its Decay

Gallis, Michail A.; Bitter, Neal B.; Koehler, Timothy P.; Torczynski, J.R.; Plimpton, Steven J.; Papadakis, G.

We provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov -5/3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can be used to investigate turbulent flows quantitatively.