The ASC program seeks to use machine learning to improve efficiencies in its stockpile stewardship mission. Moreover, there is a growing market for technologies dedicated to accelerating AI workloads. Many of these emerging architectures promise to provide savings in energy efficiency, area, and latency when compared to traditional CPUs for these types of applications — neuromorphic analog and digital technologies provide both low-power and configurable acceleration of challenging artificial intelligence (AI) algorithms. If designed into a heterogeneous system with other accelerators and conventional compute nodes, these technologies have the potential to augment the capabilities of traditional High Performance Computing (HPC) platforms [5]. This expanded computation space requires not only a new approach to physics simulation, but the ability to evaluate and analyze next-generation architectures specialized for AI/ML workloads in both traditional HPC and embedded ND applications. Developing this capability will enable ASC to understand how this hardware performs in both HPC and ND environments, improve our ability to port our applications, guide the development of computing hardware, and inform vendor interactions, leading them toward solutions that address ASC’s unique requirements.
This report details work that was completed to address the Fiscal Year 2022 Advanced Science and Technology (AS&T) Laboratory Directed Research and Development (LDRD) call for “AI-enhanced Co-Design of Next Generation Microelectronics.” This project required concurrent contributions from the fields of 1) materials science, 2) devices and circuits, 3) physics of computing, and 4) algorithms and system architectures. During this project, we developed AI-enhanced circuit design methods that relied on reinforcement learning and evolutionary algorithms. The AI-enhanced design methods were tested on neuromorphic circuit design problems that have real-world applications related to Sandia’s mission needs. The developed methods enable the design of circuits, including circuits that are built from emerging devices, and they were also extended to enable novel device discovery. We expect that these AI-enhanced design methods will accelerate progress towards developing next-generation, high-performance neuromorphic computing systems.
Analog computing has been widely proposed to improve the energy efficiency of multiple important workloads including neural network operations, and other linear algebra kernels. To properly evaluate analog computing and explore more complex workloads such as systems consisting of multiple analog data paths, system level simulations are required. Moreover, prior work on system architectures for analog computing often rely on custom simulators creating signficant additional design effort and complicating comparisons between different systems. To remedy these issues, this report describes the design and implementation of a flexible tile-based analog accelerator element for the Structural Simulation Toolkit (SST). The element focuses on heavily on the tile controller—an often neglected aspect of prior work—that is sufficiently versatile to simulate a wide range of different tile operations including neural network layers, signal processing kernels, and generic linear algebra operations without major constraints. The tile model also interoperates with existing SST memory and network models to reduce the overall development load and enable future simulation of heterogeneous systems with both conventional digital logic and analog compute tiles. Finally, both the tile and array models are designed to easily support future extensions as new analog operations and applications that can benefit from analog computing are developed.
We reformulate fundamental numerical problems to run on novel hardware inspired by the brain. Such "neuromorphie hardware consumes less energy per computation, promising a means to augment next-generation exascale computers. However, their programming model is radically different from floating-point machines, with fewer guarantees about precision and communication. The approach is to pass each given problem through a sequence of transformations (algorithmic "reductions") which change it from conventional form into a dynamical system, then ultimately into a spiking neural network. Results for the eigenvalue problem are presented, showing that the dynamical system formulation is feasible. This page left blank