Publications

3 Results
Skip to search filters

Arctic Climate Systems Analysis

Ivey, Mark D.; Robinson, David G.; Boslough, Mark B.; Backus, George A.; Peterson, Kara J.; van Bloemen Waanders, Bart G.; Swiler, Laura P.; Desilets, Darin M.; Reinert, Rhonda K.

This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

More Details

Simulating economic effects of disruptions in the telecommunications infrastructure

Barton, Dianne C.; Barton, Dianne C.; Eidson, Eric D.; Schoenwald, David A.; Cox, Roger G.; Reinert, Rhonda K.

CommAspen is a new agent-based model for simulating the interdependent effects of market decisions and disruptions in the telecommunications infrastructure on other critical infrastructures in the U.S. economy such as banking and finance, and electric power. CommAspen extends and modifies the capabilities of Aspen-EE, an agent-based model previously developed by Sandia National Laboratories to analyze the interdependencies between the electric power system and other critical infrastructures. CommAspen has been tested on a series of scenarios in which the communications network has been disrupted, due to congestion and outages. Analysis of the scenario results indicates that communications networks simulated by the model behave as their counterparts do in the real world. Results also show that the model could be used to analyze the economic impact of communications congestion and outages.

More Details

Aspen-EE: An Agent-Based Model of Infrastructure Interdependency

Barton, Dianne C.; Eidson, Eric D.; Schoenwald, David A.; Stamber, Kevin L.; Reinert, Rhonda K.

This report describes the features of Aspen-EE (Electricity Enhancement), a new model for simulating the interdependent effects of market decisions and disruptions in the electric power system on other critical infrastructures in the US economy. Aspen-EE extends and modifies the capabilities of Aspen, an agent-based model previously developed by Sandia National Laboratories. Aspen-EE was tested on a series of scenarios in which the rules governing electric power trades were changed. Analysis of the scenario results indicates that the power generation company agents will adjust the quantity of power bid into each market as a function of the market rules. Results indicate that when two power markets are faced with identical economic circumstances, the traditionally higher-priced market sees its market clearing price decline, while the traditionally lower-priced market sees a relative increase in market clearing price. These results indicate that Aspen-EE is predicting power market trends that are consistent with expected economic behavior.

More Details
3 Results
3 Results