Publications

6 Results
Skip to search filters

Particle dynamics modeling methods for colloid suspensions

Computational Particle Mechanics

Bolintineanu, Dan S.; Grest, Gary S.; Lechman, Jeremy B.; Pierce, Flint P.; Plimpton, Steven J.; Schunk, Randy

We present a review and critique of several methods for the simulation of the dynamics of colloidal suspensions at the mesoscale. We focus particularly on simulation techniques for hydrodynamic interactions, including implicit solvents (Fast Lubrication Dynamics, an approximation to Stokesian Dynamics) and explicit/particle-based solvents (Multi-Particle Collision Dynamics and Dissipative Particle Dynamics). Several variants of each method are compared quantitatively for the canonical system of monodisperse hard spheres, with a particular focus on diffusion characteristics, as well as shear rheology and microstructure. In all cases, we attempt to match the relevant properties of a well-characterized solvent, which turns out to be challenging for the explicit solvent models. Reasonable quantitative agreement is observed among all methods, but overall the Fast Lubrication Dynamics technique shows the best accuracy and performance. We also devote significant discussion to the extension of these methods to more complex situations of interest in industrial applications, including models for non-Newtonian solvent rheology, non-spherical particles, drying and curing of solvent and flows in complex geometries. This work identifies research challenges and motivates future efforts to develop techniques for quantitative, predictive simulations of industrially relevant colloidal suspension processes.

More Details

Performance of mesoscale modeling methods for predicting microstructure, mobility and rheology of charged suspensions

Plimpton, Steven J.; Schunk, Randy; Lechman, Jeremy B.; Grest, Gary S.; Pierce, Flint P.; Grillet, Anne M.

In this presentation we examine the accuracy and performance of a suite of discrete-element-modeling approaches to predicting equilibrium and dynamic rheological properties of polystyrene suspensions. What distinguishes each approach presented is the methodology of handling the solvent hydrodynamics. Specifically, we compare stochastic rotation dynamics (SRD), fast lubrication dynamics (FLD) and dissipative particle dynamics (DPD). Method-to-method comparisons are made as well as comparisons with experimental data. Quantities examined are equilibrium structure properties (e.g. pair-distribution function), equilibrium dynamic properties (e.g. short- and long-time diffusivities), and dynamic response (e.g. steady shear viscosity). In all approaches we deploy the DLVO potential for colloid-colloid interactions. Comparisons are made over a range of volume fractions and salt concentrations. Our results reveal the utility of such methods for long-time diffusivity prediction can be dubious in certain ranges of volume fraction, and other discoveries regarding the best formulation to use in predicting rheological response.

More Details

Nanoparticle flow, ordering and self-assembly

Grest, Gary S.; Brown, William M.; Lechman, Jeremy B.; Petersen, Matt K.; Plimpton, Steven J.; Schunk, Randy

Nanoparticles are now more than ever being used to tailor materials function and performance in differentiating technologies because of their profound effect on thermo-physical, mechanical and optical properties. The most feasible way to disperse particles in a bulk material or control their packing at a substrate is through fluidization in a carrier, followed by solidification through solvent evaporation/drying/curing/sintering. Unfortunately processing particles as concentrated, fluidized suspensions into useful products remains an art largely because the effect of particle shape and volume fraction on fluidic properties and suspension stability remains unexplored in a regime where particle-particle interaction mechanics is prevalent. To achieve a stronger scientific understanding of the factors that control nanoparticle dispersion and rheology we have developed a multiscale modeling approach to bridge scales between atomistic and molecular-level forces active in dense nanoparticle suspensions. At the largest length scale, two 'coarse-grained' numerical techniques have been developed and implemented to provide for high-fidelity numerical simulations of the rheological response and dispersion characteristics typical in a processing flow. The first is a coupled Navier-Stokes/discrete element method in which the background solvent is treated by finite element methods. The second is a particle based method known as stochastic rotational dynamics. These two methods provide a new capability representing a 'bridge' between the molecular scale and the engineering scale, allowing the study of fluid-nanoparticle systems over a wide range of length and timescales as well as particle concentrations. To validate these new methodologies, multi-million atoms simulations explicitly including the solvent have been carried out. These simulations have been vital in establishing the necessary 'subgrid' models for accurate prediction at a larger scale and refining the two coarse-grained methodologies.

More Details

Large deformation solid-fluid interaction via a level set approach

Rao, Rekha R.; Noble, David R.; Schunk, Randy; Wilkes, Edward D.; Baer, Thomas A.; Rao, Rekha R.; Notz, Patrick N.

Solidification and blood flow seemingly have little in common, but each involves a fluid in contact with a deformable solid. In these systems, the solid-fluid interface moves as the solid advects and deforms, often traversing the entire domain of interest. Currently, these problems cannot be simulated without innumerable expensive remeshing steps, mesh manipulations or decoupling the solid and fluid motion. Despite the wealth of progress recently made in mechanics modeling, this glaring inadequacy persists. We propose a new technique that tracks the interface implicitly and circumvents the need for remeshing and remapping the solution onto the new mesh. The solid-fluid boundary is tracked with a level set algorithm that changes the equation type dynamically depending on the phases present. This novel approach to coupled mechanics problems promises to give accurate stresses, displacements and velocities in both phases, simultaneously.

More Details
6 Results
6 Results