Deep Operator Network with Predictive Uncertainty
Abstract not provided.
Abstract not provided.
This report summarizes the work performed under the project "Linear Programming in Strongly Polynomial Time." Linear programming (LP) is a classic combinatorial optimization problem heavily used directly and as an enabling subroutine in integer programming (IP). Specifically IP is the same as LP except that some solution variables must take integer values (e.g. to represent yes/no decisions). Together LP and IP have many applications in resource allocation including general logistics, and infrastructure design and vulnerability analysis. The project was motivated by the PI's recent success developing methods to efficiently sample Voronoi vertices (essentially finding nearest neighbors in high-dimensional point sets) in arbitrary dimension. His method seems applicable to exploring the high-dimensional convex feasible space of an LP problem. Although the project did not provably find a strongly-polynomial algorithm, it explored multiple algorithm classes. The new medial simplex algorithms may still lead to solvers with improved provable complexity. We describe medial simplex algorithms and some relevant structural/complexity results. We also designed a novel parallel LP algorithm based on our geometric insights and implemented it in the Spoke-LP code. A major part of the computational step is many independent vector dot products. Our parallel algorithm distributes the problem constraints across processors. Current commercial and high-quality free LP solvers require all problem details to fit onto a single processor or multicore. Our new algorithm might enable the solution of problems too large for any current LP solvers. We describe our new algorithm, give preliminary proof-of-concept experiments, and describe a new generator for arbitrarily large LP instances.
This manuscript comprises the final report for the 1-year, FY19 LDRD project "Rigorous Data Fusion for Computationally Expensive Simulations," wherein an alternative approach to Bayesian calibration was developed based a new sampling technique called VoroSpokes. Vorospokes is a novel quadrature and sampling framework defined with respect to Voronoi tessellations of bounded domains in R d developed within this project. In this work, we first establish local quadrature and sampling results on convex polytopes using randomly directed rays, or spokes, to approximate the quantities of interest for a specified target function. A theoretical justification for both procedures is provided along with empirical results demonstrating the unbiased convergence in the resulting estimates/samples. The local quadrature and sampling procedures are then extended to global procedures defined on more general domains by applying the local results to the cells of a Voronoi tessellation covering the domain in consideration. We then demonstrate how the proposed global sampling procedure can be used to define a natural framework for adaptively constructing Voronoi Piecewise Surrogate (VPS) approximations based on local error estimates. Finally, we show that the adaptive VPS procedure can be used to form a surrogate model approximation to a specified, potentially unnormalized, density function, and that the global sampling procedure can be used to efficiently draw independent samples from the surrogate density in parallel. The performance of the resulting VoroSpokes sampling framework is assessed on a collection of Bayesian inference problems and is shown to provide highly accurate posterior predictions which align with the results obtained using traditional methods such as Gibbs sampling and random-walk Markov Chain Monte Carlo (MCMC). Importantly, the proposed framework provides a foundation for performing Bayesian inference tasks which is entirely independent from the theory of Markov chains.