Development of SNASP Machine Learned Interatomic Potentials for Materials in Extreme Environments
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nuclear Fusion
Erosion of the beryllium first wall material in tokamak reactors has been shown to result in transport and deposition on the tungsten divertor. Experimental studies of beryllium implantation in tungsten indicate that mixed W-Be intermetallic deposits can form, which have lower melting temperatures than tungsten and can trap tritium at higher rates. To better understand the formation and growth rate of these intermetallics, cumulative molecular dynamics (MD) simulations of both high and low energy beryllium deposition in tungsten were performed. In both cases, a W-Be mixed material layer (MML) emerged at the surface within several nanoseconds, either through energetic implantation or a thermally-activated exchange mechanism, respectively. While some ordering of the material into intermetallics occurred, fully ordered structures did not emerge from the deposition simulations. Targeted MD simulations of the MML to further study the rate of Be diffusion and intermetallic growth rates indicate that for both cases, the gradual re-structuring of the material into an ordered intermetallic layer is beyond accessible MD time scales(≼1 μs). However, the rapid formation of the MML within nanoseconds indicates that beryllium deposition can influence other plasma species interactions at the surface and begin to alter the tungsten material properties. Therefore, beryllium deposition on the divertor surface, even in small amounts, is likely to cause significant changes in plasma-surface interactions and will need to be considered in future studies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nuclear Fusion
One of the most severe obstacles to increasing the longevity of tungsten-based plasma facing components, such as divertor tiles, is the surface deterioration driven by sub-surface helium bubble formation and rupture. Supported by experimental observations at PISCES, this work uses molecular dynamics simulations to identify the microscopic mechanisms underlying suppression of helium bubble formation by the introduction of plasma-borne beryllium. Simulations of the initial surface material (crystalline W), early-time Be exposure (amorphous W-Be) and final WBe2 intermetallic surfaces were used to highlight the effect of Be. Significant differences in He retention, depth distribution and cluster size were observed in the cases with beryllium present. Helium resided much closer to the surface in the Be cases with nearly 80% of the total helium inventory located within the first 2 nm. Moreover, coarsening of the He depth profile due to bubble formation is suppressed due to a one-hundred fold decrease in He mobility in WBe2, relative to crystalline W. This is further evidenced by the drastic reduction in He cluster sizes even when it was observed that both the amorphous W-Be and WBe2 intermetallic phases retain nearly twice as much He during cumulative implantation studies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review B
The central approximation made in classical molecular dynamics simulation of materials is the interatomic potential used to calculate the forces on the atoms. Great effort and ingenuity is required to construct viable functional forms and find accurate parametrizations for potentials using traditional approaches. Machine learning has emerged as an effective alternative approach to develop accurate and robust interatomic potentials. Starting with a very general model form, the potential is learned directly from a database of electronic structure calculations and therefore can be viewed as a multiscale link between quantum and classical atomistic simulations. Risk of inaccurate extrapolation exists outside the narrow range of time and length scales where the two methods can be directly compared. In this work, we use the spectral neighbor analysis potential (SNAP) and show how a fit can be produced with minimal interpolation errors which is also robust in extrapolating beyond training. To demonstrate the method, we have developed a tungsten-beryllium potential suitable for the full range of binary compositions. Subsequently, large-scale molecular dynamics simulations were performed of high energy Be atom implantation onto the (001) surface of solid tungsten. The machine learned W-Be potential generates a population of implantation structures consistent with quantum calculations of defect formation energies. A very shallow (<2nm) average Be implantation depth is predicted which may explain ITER diverter degradation in the presence of beryllium.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.