Publications

Results 1–25 of 28
Skip to search filters

Shock compression of strongly correlated oxides: A liquid-regime equation of state for cerium(IV) oxide

Physical Review B

Weck, Philippe F.; Cochrane, Kyle C.; Root, Seth R.; Lane, J.M.; Shulenburger, Luke N.; Carpenter, John H.; Sjostrom, Travis; Mattsson, Thomas M.; Vogler, Tracy V.

The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ=2.5 to 20g/cm3. The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-Type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.

More Details

Stopping of Deuterium in Warm Dense Deuterium from Ehrenfest Time-Dependent Density Functional Theory

Contributions to Plasma Physics

Magyar, Rudolph J.; Shulenburger, Luke N.; Baczewski, Andrew D.

In these proceedings, we show that time-dependent density functional theory is capable of stopping calculations at the extreme conditions of temperature and pressure seen in warm dense matter. The accuracy of the stopping curves tends to be up to about 20% lower than empirical models that are in use. However, TDDFT calculations are free from fitting parameters and assumptions about the model form of the dielectric function. This work allows the simulation of ion stopping in many materials that are difficult to study experimentally. (© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

More Details

Benchmarking Adiabatic Quantum Optimization for Complex Network Analysis

Parekh, Ojas D.; Wendt, Jeremy D.; Shulenburger, Luke N.; Landahl, Andrew J.; Moussa, Jonathan E.; Aidun, John B.

We lay the foundation for a benchmarking methodology for assessing current and future quantum computers. We pose and begin addressing fundamental questions about how to fairly compare computational devices at vastly different stages of technological maturity. We critically evaluate and offer our own contributions to current quantum benchmarking efforts, in particular those involving adiabatic quantum computation and the Adiabatic Quantum Optimizers produced by D-Wave Systems, Inc. We find that the performance of D-Wave's Adiabatic Quantum Optimizers scales roughly on par with classical approaches for some hard combinatorial optimization problems; however, architectural limitations of D-Wave devices present a significant hurdle in evaluating real-world applications. In addition to identifying and isolating such limitations, we develop algorithmic tools for circumventing these limitations on future D-Wave devices, assuming they continue to grow and mature at an exponential rate for the next several years.

More Details

Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine

Physical Review B - Condensed Matter and Materials Physics

Mattsson, Thomas M.; Root, Seth R.; Mattsson, Ann E.; Shulenburger, Luke N.; Magyar, Rudolph J.; Flicker, Dawn G.

We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Finally, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.

More Details

Numerical implementation of time-dependent density functional theory for extended systems in extreme environments

Baczewski, Andrew D.; Shulenburger, Luke N.; Desjarlais, Michael P.; Magyar, Rudolph J.

In recent years, DFT-MD has been shown to be a useful computational tool for exploring the properties of WDM. These calculations achieve excellent agreement with shock compression experiments, which probe the thermodynamic parameters of the Hugoniot state. New X-ray Thomson Scattering diagnostics promise to deliver independent measurements of electronic density and temperature, as well as structural information in shocked systems. However, they require the development of new levels of theory for computing the associated observables within a DFT framework. The experimentally observable x-ray scattering cross section is related to the electronic density-density response function, which is obtainable using TDDFT - a formally exact extension of conventional DFT that describes electron dynamics and excited states. In order to develop a capability for modeling XRTS data and, more generally, to establish a predictive capability for rst principles simulations of matter in extreme conditions, real-time TDDFT with Ehrenfest dynamics has been implemented in an existing PAW code for DFT-MD calculations. The purpose of this report is to record implementation details and benchmarks as the project advances from software development to delivering novel scienti c results. Results range from tests that establish the accuracy, e ciency, and scalability of our implementation, to calculations that are veri ed against accepted results in the literature. Aside from the primary XRTS goal, we identify other more general areas where this new capability will be useful, including stopping power calculations and electron-ion equilibration.

More Details

Evaluating Near-Term Adiabatic Quantum Computing

Parekh, Ojas D.; Aidun, John B.; Dubicka, Irene D.; Landahl, Andrew J.; Shulenburger, Luke N.; Tigges, Chris P.; Wendt, Jeremy D.

This report summarizes the first year’s effort on the Enceladus project, under which Sandia was asked to evaluate the potential advantages of adiabatic quantum computing for analyzing large data sets in the near future, 5-to-10 years from now. We were not specifically evaluating the machine being sold by D-Wave Systems, Inc; we were asked to anticipate what future adiabatic quantum computers might be able to achieve. While realizing that the greatest potential anticipated from quantum computation is still far into the future, a special purpose quantum computing capability, Adiabatic Quantum Optimization (AQO), is under active development and is maturing relatively rapidly; indeed, D-Wave Systems Inc. already offers an AQO device based on superconducting flux qubits. The AQO architecture solves a particular class of problem, namely unconstrained quadratic Boolean optimization. Problems in this class include many interesting and important instances. Because of this, further investigation is warranted into the range of applicability of this class of problem for addressing challenges of analyzing big data sets and the effectiveness of AQO devices to perform specific analyses on big data. Further, it is of interest to also consider the potential effectiveness of anticipated special purpose adiabatic quantum computers (AQCs), in general, for accelerating the analysis of big data sets. The objective of the present investigation is an evaluation of the potential of AQC to benefit analysis of big data problems in the next five to ten years, with our main focus being on AQO because of its relative maturity. We are not specifically assessing the efficacy of the D-Wave computing systems, though we do hope to perform some experimental calculations on that device in the sequel to this project, at least to provide some data to compare with our theoretical estimates.

More Details
Results 1–25 of 28
Results 1–25 of 28