Publications

11 Results
Skip to search filters

Exploration of multifidelity UQ sampling strategies for computer network applications

International Journal for Uncertainty Quantification

Geraci, Gianluca G.; Crussell, Jonathan C.; Swiler, Laura P.; Debusschere, Bert D.

Network modeling is a powerful tool to enable rapid analysis of complex systems that can be challenging to study directly using physical testing. Two approaches are considered: emulation and simulation. The former runs real software on virtualized hardware, while the latter mimics the behavior of network components and their interactions in software. Although emulation provides an accurate representation of physical networks, this approach alone cannot guarantee the characterization of the system under realistic operative conditions. Operative conditions for physical networks are often characterized by intrinsic variability (payload size, packet latency, etc.) or a lack of precise knowledge regarding the network configuration (bandwidth, delays, etc.); therefore uncertainty quantification (UQ) strategies should be also employed. UQ strategies require multiple evaluations of the system with a number of evaluation instances that roughly increases with the problem dimensionality, i.e., the number of uncertain parameters. It follows that a typical UQ workflow for network modeling based on emulation can easily become unattainable due to its prohibitive computational cost. In this paper, a multifidelity sampling approach is discussed and applied to network modeling problems. The main idea is to optimally fuse information coming from simulations, which are a low-fidelity version of the emulation problem of interest, in order to decrease the estimator variance. By reducing the estimator variance in a sampling approach it is usually possible to obtain more reliable statistics and therefore a more reliable system characterization. Several network problems of increasing difficulty are presented. For each of them, the performance of the multifidelity estimator is compared with respect to the single fidelity counterpart, namely, Monte Carlo sampling. For all the test problems studied in this work, the multifidelity estimator demonstrated an increased efficiency with respect to MC.

More Details

Quantifying Uncertainty in Emulations: LDRD Report

Crussell, Jonathan C.; Brown, Aaron B.; Jennings, Jeremy K.; Kavaler, David; Kroeger, Thomas M.; Phillips, Cynthia A.

This report summarizes the work performed under the project "Quantifying Uncertainty in Emulations." Emulation can be used to model real-world systems, typically using virtual- ization to run the real software on virtualized hardware. Emulations are increasingly used to answer mission-oriented questions, but how well they represent the real-world systems is still an open area of research. The goal of the project was to quantify where and how emulations differ from the real world. To do so, we ran a representative workload on both, and collected and compared metrics to identify differences. We aimed to capture behaviors, rather than performance, differences as the latter is more well-understood in the literature. This report summarizes the project's major accomplishments, with the background to understand these accomplishments. It gathers the abstracts and references for the refereed publications that have appeared as part of this work. We then archive partial work not yet ready for publication. 1 Principal Investigator 2 Remaining authors ordered alphabetically by last name

More Details

Virtually the Same: Comparing Physical and Virtual Testbeds

2019 International Conference on Computing, Networking and Communications, ICNC 2019

Crussell, Jonathan C.; Kroeger, Thomas M.; Brown, Aaron B.; Phillips, Cynthia A.

Network designers, planners, and security professionals increasingly rely on large-scale testbeds based on virtualization to emulate networks and make decisions about real-world deployments. However, there has been limited research on how well these virtual testbeds match their physical counterparts. Specifically, does the virtualization that these testbeds depend on actually capture real-world behaviors sufficiently well to support decisions?As a first step, we perform simple experiments on both physical and virtual testbeds to begin to understand where and how the testbeds differ. We set up a web service on one host and run ApacheBench against this service from a different host, instrumenting each system during these tests.We define an initial repeatable methodology (algorithm) to quantitatively compare physical and virtual testbeds. Specifically we compare the testbeds at three levels of abstraction: application, operating system (OS) and network. For the application level, we use the ApacheBench results. For OS behavior, we compare patterns of system call orderings using Markov chains. This provides a unique visual representation of the workload and OS behavior in our testbeds. We also drill down into read-system-call behaviors and show how at one level both systems are deterministic and identical, but as we move up in abstractions that consistency declines. Finally, we use packet captures to compare network behaviors and performance. We reconstruct flows and compare per-flow and per-experiment statistics.From these comparisons, we find that the behavior of the workload in the testbeds is similar but that the underlying processes to support it do vary. The low-level network behavior can vary quite widely in packetization depending on the virtual network driver. While these differences can be important, and knowing about them will help experiment designers, the core application and OS behaviors still represent similar processes.

More Details

Exploration of multifidelity approaches for uncertainty quantification in network applications

Proceedings of the 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering, UNCECOMP 2019

Geraci, Gianluca G.; Swiler, Laura P.; Crussell, Jonathan C.; Debusschere, Bert D.

Communication networks have evolved to a level of sophistication that requires computer models and numerical simulations to understand and predict their behavior. A network simulator is a software that enables the network designer to model several components of a computer network such as nodes, routers, switches and links and events such as data transmissions and packet errors in order to obtain device and network level metrics. Network simulations, as many other numerical approximations that model complex systems, are subject to the specification of parameters and operative conditions of the system. Very often the full characterization of the system and their input is not possible, therefore Uncertainty Quantification (UQ) strategies need to be deployed to evaluate the statistics of its response and behavior. UQ techniques, despite the advancements in the last two decades, still suffer in the presence of a large number of uncertain variables and when the regularity of the systems response cannot be guaranteed. In this context, multifidelity approaches have gained popularity in the UQ community recently due to their flexibility and robustness with respect to these challenges. The main idea behind these techniques is to extract information from a limited number of high-fidelity model realizations and complement them with a much larger number of a set of lower fidelity evaluations. The final result is an estimator with a much lower variance, i.e. a more accurate and reliable estimator can be obtained. In this contribution we investigate the possibility to deploy multifidelity UQ strategies to computer network analysis. Two numerical configurations are studied based on a simplified network with one client and one server. Preliminary results for these tests suggest that multifidelity sampling techniques might be used as effective tools for UQ tools in network applications.

More Details
11 Results
11 Results