Publications

16 Results
Skip to search filters

AI-enhanced Codesign for Next-Generation Neuromorphic Circuits and Systems

Cardwell, Suma G.; Smith, John D.; Crowder, Douglas C.

This report details work that was completed to address the Fiscal Year 2022 Advanced Science and Technology (AS&T) Laboratory Directed Research and Development (LDRD) call for “AI-enhanced Co-Design of Next Generation Microelectronics.” This project required concurrent contributions from the fields of 1) materials science, 2) devices and circuits, 3) physics of computing, and 4) algorithms and system architectures. During this project, we developed AI-enhanced circuit design methods that relied on reinforcement learning and evolutionary algorithms. The AI-enhanced design methods were tested on neuromorphic circuit design problems that have real-world applications related to Sandia’s mission needs. The developed methods enable the design of circuits, including circuits that are built from emerging devices, and they were also extended to enable novel device discovery. We expect that these AI-enhanced design methods will accelerate progress towards developing next-generation, high-performance neuromorphic computing systems.

More Details

Neuromorphic scaling advantages for energy-efficient random walk computations

Nature Electronics

Smith, John D.; Hill, Aaron J.; Reeder, Leah E.; Franke, Brian C.; Lehoucq, Richard B.; Parekh, Ojas D.; Severa, William M.; Aimone, James B.

Neuromorphic computing, which aims to replicate the computational structure and architecture of the brain in synthetic hardware, has typically focused on artificial intelligence applications. What is less explored is whether such brain-inspired hardware can provide value beyond cognitive tasks. Here we show that the high degree of parallelism and configurability of spiking neuromorphic architectures makes them well suited to implement random walks via discrete-time Markov chains. These random walks are useful in Monte Carlo methods, which represent a fundamental computational tool for solving a wide range of numerical computing tasks. Using IBM’s TrueNorth and Intel’s Loihi neuromorphic computing platforms, we show that our neuromorphic computing algorithm for generating random walk approximations of diffusion offers advantages in energy-efficient computation compared with conventional approaches. We also show that our neuromorphic computing algorithm can be extended to more sophisticated jump-diffusion processes that are useful in a range of applications, including financial economics, particle physics and machine learning.

More Details

CSRI Summer Proceedings 2021

Smith, John D.; Galvan, Edgar

The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia National Laboratories for focused collaborative research on Department of Energy (DOE) computer and computational science problems. The institute provides an opportunity for university researches to learn about problems in computer and computational science at DOE laboratories, and help transfer results of their research to programs at the labs. Some specific CSRI research interest areas are: scalable solvers, optimization, algebraic preconditioners, graph-based, discrete, and combinatorial algorithms, uncertainty estimation, validation and verification methods, mesh generation, dynamic load-balancing, virus and other malicious-code defense, visualization, scalable cluster computers, beyond Moore’s Law computing, exascale computing tools and application design, reduced order and multiscale modeling, parallel input/output, and theoretical computer science. The CSRI Summer Program is organized by CSRI and includes a weekly seminar series and the publication of a summer proceedings.

More Details

CSRI Summer Proceedings 2021

Smith, John D.; Galvan, Edgar

The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia National Laboratories for focused collaborative research on Department of Energy (DOE) computer and computational science problems. The institute provides an opportunity for university researches to learn about problems in computer and computational science at DOE laboratories, and help transfer results of their research to programs at the labs. Some specific CSRI research interest areas are: scalable solvers, optimization, algebraic preconditioners, graph-based, discrete, and combinatorial algorithms, uncertainty estimation, validation and verification methods, mesh generation, dynamic load-balancing, virus and other malicious-code defense, visualization, scalable cluster computers, beyond Moore’s Law computing, exascale computing tools and application design, reduced order and multiscale modeling, parallel input/output, and theoretical computer science. The CSRI Summer Program is organized by CSRI and includes a weekly seminar series and the publication of a summer proceedings.

More Details

Assessing a Neuromorphic Platform for use in Scientific Stochastic Sampling

Proceedings - 2021 International Conference on Rebooting Computing, ICRC 2021

Aimone, James B.; Lehoucq, Richard B.; Severa, William M.; Smith, John D.

Recent advances in neuromorphic algorithm development have shown that neural inspired architectures can efficiently solve scientific computing problems including graph decision problems and partial-integro differential equations (PIDEs). The latter requires the generation of a large number of samples from a stochastic process. While the Monte Carlo approximation of the solution of the PIDEs converges with an increasing number of sampled neuromorphic trajectories, the fidelity of samples from a given stochastic process using neuromorphic hardware requires verification. Such an exercise increases our trust in this emerging hardware and works toward unlocking its energy and scaling efficiency for scientific purposes such as synthetic data generation and stochastic simulation. In this paper, we focus our verification efforts on a one-dimensional Ornstein- Uhlenbeck stochastic differential equation. Using a discrete-time Markov chain approximation, we sample trajectories of the stochastic process across a variety of parameters on an Intel 8- Loihi chip Nahuku neuromorphic platform. Using relative entropy as a verification measure, we demonstrate that the random samples generated on Loihi are, in an average sense, acceptable. Finally, we demonstrate how Loihi's fidelity to the distribution changes as a function of the parameters of the Ornstein- Uhlenbeck equation, highlighting a trade-off between the lower-precision random number generation of the neuromorphic platform and our algorithm's ability to represent a discrete-time Markov chain.

More Details

Solving a steady-state PDE using spiking networks and neuromorphic hardware

ACM International Conference Proceeding Series

Smith, John D.; Severa, William M.; Hill, Aaron J.; Reeder, Leah E.; Franke, Brian C.; Lehoucq, Richard B.; Parekh, Ojas D.; Aimone, James B.

The widely parallel, spiking neural networks of neuromorphic processors can enable computationally powerful formulations. While recent interest has focused on primarily machine learning tasks, the space of appropriate applications is wide and continually expanding. Here, we leverage the parallel and event-driven structure to solve a steady state heat equation using a random walk method. The random walk can be executed fully within a spiking neural network using stochastic neuron behavior, and we provide results from both IBM TrueNorth and Intel Loihi implementations. Additionally, we position this algorithm as a potential scalable benchmark for neuromorphic systems.

More Details
16 Results
16 Results