Chen, Qi; Johnson, Emma S.; Bernal, David E.; Valentin, Romeo; Kale, Sunjeev; Bates, Johnny; Siirola, John D.; Grossmann, Ignacio E.
We present three core principles for engineering-oriented integrated modeling and optimization tool sets—intuitive modeling contexts, systematic computer-aided reformulations, and flexible solution strategies—and describe how new developments in Pyomo.GDP for Generalized Disjunctive Programming (GDP) advance this vision. We describe a new logical expression system implementation for Pyomo.GDP allowing for a more intuitive description of logical propositions. The logical expression system supports automated reformulation of these logical constraints to linear constraints. We also describe two new logic-based global optimization solver implementations built on Pyomo.GDP that exploit logical structure to avoid “zero-flow” numerical difficulties that arise in nonlinear network design problems when nodes or streams disappear. These new solvers also demonstrate the capability to link to external libraries for expanded functionality within an integrated implementation. We present these new solvers in the context of a flexible array of solution paths available to GDP models. Finally, we present results on a new library of GDP models demonstrating the value of multiple solution approaches.
This report summarizes the guidance provided to Sustainable Engineering to help them learn about equation-oriented optimization and the Sandia-developed software packages Pyomo and IDAESPSE. This was a short 10-week project (October 2021 – December 2021) and the goal was to help the company learn about the IDAES framework and how it could be used for their future projects. The company submitted an SBIR proposal related to developing a green ammonia process model with IDAES and if that proposal is successful this NMSBA project could lead to future collaboration opportunities.
This work focuses on estimation of unknown states and parameters in a discrete-time, stochastic, SEIR model using reported case counts and mortality data. An SEIR model is based on classifying individuals with respect to their status in regards to the progression of the disease, where S is the number individuals who remain susceptible to the disease, E is the number of individuals who have been exposed to the disease but not yet infectious, I is the number of individuals who are currently infectious, and R is the number of recovered individuals. For convenience, we include in our notation the number of infections or transmissions, T, that represents the number of individuals transitioning from compartment S to compartment E over a particular interval. Similarly, we use C to represent the number of reported cases.
We present SUSPECT, an open source toolkit that symbolically analyzes mixed-integer nonlinear optimization problems formulated using the Python algebraic modeling library Pyomo. We present the data structures and algorithms used to implement SUSPECT. SUSPECT works on a directed acyclic graph representation of the optimization problem to perform: bounds tightening, bound propagation, monotonicity detection, and convexity detection. We show how the tree-walking rules in SUSPECT balance the need for lightweight computation with effective special structure detection. SUSPECT can be used as a standalone tool or as a Python library to be integrated in other tools or solvers. We highlight the easy extensibility of SUSPECT with several recent convexity detection tricks from the literature. We also report experimental results on the MINLPLib 2 dataset.