Publications
SUSPECT: MINLP special structure detector for Pyomo
We present SUSPECT, an open source toolkit that symbolically analyzes mixed-integer nonlinear optimization problems formulated using the Python algebraic modeling library Pyomo. We present the data structures and algorithms used to implement SUSPECT. SUSPECT works on a directed acyclic graph representation of the optimization problem to perform: bounds tightening, bound propagation, monotonicity detection, and convexity detection. We show how the tree-walking rules in SUSPECT balance the need for lightweight computation with effective special structure detection. SUSPECT can be used as a standalone tool or as a Python library to be integrated in other tools or solvers. We highlight the easy extensibility of SUSPECT with several recent convexity detection tricks from the literature. We also report experimental results on the MINLPLib 2 dataset.