Grain-scale microstructure evolution during additive manufacturing is a complex physical process. As with traditional solidification methods of material processing (e.g. casting and welding), microstructural properties are highly dependent on the solidification conditions involved. Additive manufacturing processes however, incorporate additional complexity such as remelting, and solid-state evolution caused by subsequent heat source passes and by holding the entire build at moderately high temperatures during a build. We present a three-dimensional model that simulates both solidification and solid-state evolution phenomena using stochastic Monte Carlo and Potts Monte Carlo methods. The model also incorporates a finite-difference based thermal conduction solver to create a fully integrated microstructural prediction tool. The three modeling methods and their coupling are described and demonstrated for a model study of laser powder-bed fusion of 300-series stainless steel. The investigation demonstrates a novel correlation between the mean number of remelting cycles experienced during a build, and the resulting columnar grain sizes.
Traditionally, material identification is performed using global load and displacement data from simple boundary-value problems such as uni-axial tensile and simple shear tests. More recently, however, inverse techniques such as the Virtual Fields Method (VFM) that capitalize on heterogeneous, full-field deformation data have gained popularity. In this work, we have written a VFM code in a finite-deformation framework for calibration of a viscoplastic (i.e. strain-rate dependent) material model for 304L stainless steel. Using simulated experimental data generated via finite-element analysis (FEA), we verified our VFM code and compared the identified parameters with the reference parameters input into the FEA. The identified material model parameters had surprisingly large error compared to the reference parameters, which was traced to parameter covariance and the existence of many essentially equivalent parameter sets. This parameter non-uniqueness and its implications for FEA predictions is discussed in detail. Finally, we present two strategies to reduce parameter covariance – reduced parametrization of the material model and increased richness of the calibration data – which allow for the recovery of a unique solution.
Modeling material and component behavior using finite element analysis (FEA) is critical for modern engineering. One key to a credible model is having an accurate material model, with calibrated model parameters, which describes the constitutive relationship between the deformation and the resulting stress in the material. As such, identifying material model parameters is critical to accurate and predictive FEA. Traditional calibration approaches use only global data (e.g. extensometers and resultant force) and simplified geometries to find the parameters. However, the utilization of rapidly maturing full-field characterization tech- niques (e.g. Digital Image Correlation (DIC)) with inverse techniques (e.g. the Virtual Feilds Method (VFM)) provide a new, novel and improved method for parameter identification. This LDRD tested that idea: in particular, whether more parameters could be identified per test when using full-field data. The research described in this report successfully proves this hypothesis by comparing the VFM results with traditional calibration methods. Important products of the research include: verified VFM codes for identifying model parameters, a new look at parameter covariance in material model parameter estimation, new validation tech- niques to better utilize full-field measurements, and an exploration of optimized specimen design for improved data richness.