Publications

Results 1–25 of 42
Skip to search filters

All-electrical universal control of a double quantum dot qubit in silicon MOS

Technical Digest - International Electron Devices Meeting, IEDM

Harvey-Collard, Patrick; Jock, Ryan M.; Jacobson, Noah T.; Baczewski, Andrew D.; Mounce, Andrew M.; Curry, Matthew J.; Ward, Daniel R.; Anderson, John M.; Manginell, Ronald P.; Wendt, J.R.; Rudolph, Martin R.; Pluym, Tammy P.; Lilly, Michael L.; Pioro-Ladrière, Michel; Carroll, Malcolm

Qubits based on transistor-like Si MOS nanodevices are promising for quantum computing. In this work, we demonstrate a double quantum dot spin qubit that is all-electrically controlled without the need for any external components, like micromagnets, that could complicate integration. Universal control of the qubit is achieved through spin-orbit-like and exchange interactions. Using single shot readout, we show both DC- and AC-control techniques. The fabrication technology used is completely compatible with CMOS.

More Details

Tunnel coupling tuning of a QD-donor S-T qubit

Jock, Ryan M.; Jock, Ryan M.; Rudolph, Martin R.; Rudolph, Martin R.; Harvey-Collard, Patrick H.; Harvey-Collard, Patrick H.; Jacobson, Noah T.; Jacobson, Noah T.; Wendt, J.R.; Wendt, J.R.; Pluym, Tammy P.; Pluym, Tammy P.; Dominguez, Jason J.; Dominguez, Jason J.; Manginell, Ronald P.; Manginell, Ronald P.; Lilly, Michael L.; Lilly, Michael L.; Carroll, Malcolm; Carroll, Malcolm

Abstract not provided.

Coupling MOS quantum dot and phosphorous donor qubit systems

Technical Digest - International Electron Devices Meeting, IEDM

Rudolph, Martin R.; Harvey-Collard, P.; Jock, R.; Jacobson, Noah T.; Wendt, J.R.; Pluym, Tammy P.; Dominguez, Jason J.; Ten Eyck, Gregory A.; Manginell, Ronald P.; Lilly, M.P.; Carroll, Malcolm

Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe.

More Details

Coupling MOS quantum dot and phosphorous donor qubit systems

IEEE International Electron Devices Meeting

Rudolph, Martin R.; Jock, Ryan M.; Jacobson, Noah T.; Wendt, J.R.; Pluym, Tammy P.; Dominguez, Jason J.; Ten Eyck, Gregory A.; Manginell, Ronald P.; Lilly, Michael L.; Carroll, Malcolm; Harvey-Collard, Patrick H.

Si-MOS based QD qubits are attractive due to their similarity to the current semiconductor industry. We introduce a highly tunable MOS foundry compatible qubit design that couples an electrostatic quantum dot (QD) with an implanted donor. We show for the first time coherent two-axis control of a two-electron spin logical qubit that evolves under the QD-donor exchange interaction and the hyperfine interaction with the donor nucleus. The two interactions are tuned electrically with surface gate voltages to provide control of both qubit axes. Qubit decoherence is influenced by charge noise, which is of similar strength as epitaxial systems like GaAs and Si/SiGe.

More Details

Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer

Applied Physics Letters

Lu, Tzu-Ming L.; Gamble, John K.; Muller, Richard P.; Nielsen, Erik N.; Bethke, D.; Ten Eyck, Gregory A.; Pluym, Tammy P.; Wendt, J.R.; Dominguez, Jason J.; Lilly, M.P.; Carroll, Malcolm; Wanke, M.C.

Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used here leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. The device uses only a single metal-gate layer, greatly simplifying device design and fabrication.

More Details
Results 1–25 of 42
Results 1–25 of 42