Powders under compression form mesostructures of particle agglomerations in response to both inter- and intra-particle forces. The ability to computationally predict the resulting mesostructures with reasonable accuracy requires models that capture the distributions associated with particle size and shape, contact forces, and mechanical response during deformation and fracture. The following report presents experimental data obtained for the purpose of validating emerging mesostructures simulated by discrete element method and peridynamic approaches. A custom compression apparatus, suitable for integration with our micro-computed tomography (micro-CT) system, was used to collect 3-D scans of a bulk powder at discrete steps of increasing compression. Details of the apparatus and the microcrystalline cellulose particles, with a nearly spherical shape and mean particle size, are presented. Comparative simulations were performed with an initial arrangement of particles and particle shapes directly extracted from the validation experiment. The experimental volumetric reconstruction was segmented to extract the relative positions and shapes of individual particles in the ensemble, including internal voids in the case of the microcrystalline cellulose particles. These computationally determined particles were then compressed within the computational domain and the evolving mesostructures compared directly to those in the validation experiment. The ability of the computational models to simulate the experimental mesostructures and particle behavior at increasing compression is discussed.
The peridynamic theory of solid mechanics is applied to modeling the deformation and fracture of micrometer-sized particles made of organic crystalline material. A new peridynamic material model is proposed to reproduce the elastic–plastic response, creep, and fracture that are observed in experiments. The model is implemented in a three-dimensional, meshless Lagrangian simulation code. In the small deformation, elastic regime, the model agrees well with classical Hertzian contact analysis for a sphere compressed between rigid plates. Under higher load, material and geometrical nonlinearity is predicted, leading to fracture. The material parameters for the energetic material CL-20 are evaluated from nanoindentation test data on the cyclic compression and failure of micrometer-sized grains.
This Laboratory Directed Research and Development project developed and applied closely coupled experimental and computational tools to investigate powder compaction across multiple length scales. The primary motivation for this work is to provide connections between powder feedstock characteristics, processing conditions, and powder pellet properties in the context of powder-based energetic components manufacturing. We have focused our efforts on multicrystalline cellulose, a molecular crystalline surrogate material that is mechanically similar to several energetic materials of interest, but provides several advantages for fundamental investigations. We report extensive experimental characterization ranging in length scale from nanometers to macroscopic, bulk behavior. Experiments included nanoindentation of well-controlled, micron-scale pillar geometries milled into the surface of individual particles, single-particle crushing experiments, in-situ optical and computed tomography imaging of the compaction of multiple particles in different geometries, and bulk powder compaction. In order to capture the large plastic deformation and fracture of particles in computational models, we have advanced two distinct meshfree Lagrangian simulation techniques: 1.) bonded particle methods, which extend existing discrete element method capabilities in the Sandia-developed , open-source LAMMPS code to capture particle deformation and fracture and 2.) extensions of peridynamics for application to mesoscale powder compaction, including a novel material model that includes plasticity and creep. We have demonstrated both methods for simulations of single-particle crushing as well as mesoscale multi-particle compaction, with favorable comparisons to experimental data. We have used small-scale, mechanical characterization data to inform material models, and in-situ imaging of mesoscale particle structures to provide initial conditions for simulations. Both mesostructure porosity characteristics and overall stress-strain behavior were found to be in good agreement between simulations and experiments. We have thus demonstrated a novel multi-scale, closely coupled experimental and computational approach to the study of powder compaction. This enables a wide range of possible investigations into feedstock-process-structure relationships in powder-based materials, with immediate applications in energetic component manufacturing, as well as other particle-based components and processes.