Publications

16 Results
Skip to search filters

Random walks on jammed networks: Spectral properties

Physical Review E

Lechman, Jeremy B.; Bond, Stephen D.; Bolintineanu, Dan S.; Grest, Gary S.; Yarrington, Cole Y.; Silbert, Leonardo E.

Using random walk analyses we explore diffusive transport on networks obtained from contacts between isotropically compressed, monodisperse, frictionless sphere packings generated over a range of pressures in the vicinity of the jamming transition p→0. For conductive particles in an insulating medium, conduction is determined by the particle contact network with nodes representing particle centers and edges contacts between particles. The transition rate is not homogeneous, but is distributed inhomogeneously due to the randomness of packing and concomitant disorder of the contact network, e.g., the distribution of the coordination number. A narrow escape time scale is used to write a Markov process for random walks on the particle contact network. This stochastic process is analyzed in terms of spectral density of the random, sparse, Euclidean and real, symmetric, positive, semidefinite transition rate matrix. Results show network structures derived from jammed particles have properties similar to ordered, euclidean lattices but also some unique properties that distinguish them from other structures that are in some sense more homogeneous. In particular, the distribution of eigenvalues of the transition rate matrix follow a power law with spectral dimension 3. However, quantitative details of the statistics of the eigenvectors show subtle differences with homogeneous lattices and allow us to distinguish between topological and geometric sources of disorder in the network.

More Details

Multiscale modeling of shock wave localization in porous energetic material

Physical Review B

Wood, M.A.; Kittell, D.E.; Yarrington, Cole Y.; Thompson, Aidan P.

Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

More Details

Computational Mechanics for Heterogeneous Materials

Baczewski, Andrew D.; Yarrington, Cole Y.; Bond, Stephen D.; Erikson, William W.; Lehoucq, Richard B.; Mondy, L.A.; Noble, David R.; Pierce, Flint P.; Roberts, Christine C.; Van Swol, Frank

The subject of this work is the development of models for the numerical simulation of matter, momentum, and energy balance in heterogeneous materials. These are materials that consist of multiple phases or species or that are structured on some (perhaps many) scale(s). By computational mechanics we mean to refer generally to the standard type of modeling that is done at the level of macroscopic balance laws (mass, momentum, energy). We will refer to the flow or flux of these quantities in a generalized sense as transport. At issue here are the forms of the governing equations in these complex materials which are potentially strongly inhomogeneous below some correlation length scale and are yet homogeneous on larger length scales. The question then becomes one of how to model this behavior and what are the proper multi-scale equations to capture the transport mechanisms across scales. To address this we look to the area of generalized stochastic process that underlie the transport processes in homogeneous materials. The archetypal example being the relationship between a random walk or Brownian motion stochastic processes and the associated Fokker-Planck or diffusion equation. Here we are interested in how this classical setting changes when inhomogeneities or correlations in structure are introduced into the problem. Aspects of non-classical behavior need to be addressed, such as non-Fickian behavior of the mean-squared-displacement (MSD) and non-Gaussian behavior of the underlying probability distribution of jumps. We present an experimental technique and apparatus built to investigate some of these issues. We also discuss diffusive processes in inhomogeneous systems, and the role of the chemical potential in diffusion of hard spheres is considered. Also, the relevance to liquid metal solutions is considered. Finally we present an example of how inhomogeneities in material microstructure introduce fluctuations at the meso-scale for a thermal conduction problem. These fluctuations due to random microstructures also provide a means of characterizing the aleatory uncertainty in material properties at the mesoscale.

More Details
16 Results
16 Results